The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 14P
To determine
Find the escape velocity of a man as like an asteroid with a mass of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”.
The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days?
Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.
Calculate the star’s luminosity, L, in terms of the luminosity of the sun (L☉), Note: (LL=MM4where L ~ 4 × 1026 W ).
The radius of this planet is 1.5 times the radius of Jupiter. Assuming its equilibrium temperature is the temperature at which the planet radiates as much energy as it receives from its star, estimate the temperature of the planet. The value of the planet’s albedo is 0.8. (NOTE: The intensity of the star’s radiant power at a distance d from the star is…
a. Calculate the escape velocity of our solar system, from the surface of the sun.
b. What velocity would an object leaving Earth need, to escape from our solar system?
(ignore the gravitational effect from Earth and other planets for a & b)
An asteroid has a radius of about 7.5 km.
Assuming that the density of the asteroid is the same as that of the earth (5.5 g/cm3), find its total mass.
Suppose an object is to be placed in a circular orbit around the asteroid, with a radius just slightly larger than the asteroid's radius. What is the speed of the object?
Chapter 5 Solutions
The Solar System
Ch. 5 - Prob. 1RQCh. 5 - Today, what do we call the Aristotelean violent...Ch. 5 - Which of Keplers or Newtons laws best describes...Ch. 5 - Prob. 4RQCh. 5 - Prob. 5RQCh. 5 - If you drop a feather and a steel hammer at the...Ch. 5 - What is the difference between mass and weight?
Ch. 5 - Prob. 8RQCh. 5 - An astronaut working in space near the...Ch. 5 - Prob. 10RQ
Ch. 5 - A car is on a circular off ramp of an interstate...Ch. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - An astronaut is in space with a baseball and a...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Why did Newton conclude that some force had to...Ch. 5 - Why did Newton conclude that gravity has to be...Ch. 5 - Prob. 19RQCh. 5 - Prob. 20RQCh. 5 - Prob. 21RQCh. 5 - You are sitting next to a person who has twice as...Ch. 5 - Prob. 23RQCh. 5 - Why cant a spacecraft go beyond Earths gravity?Ch. 5 - Prob. 25RQCh. 5 - Balance a pencil lengthwise on the side of your...Ch. 5 - Prob. 27RQCh. 5 - Why can’t you leave Earth’s gravitational field...Ch. 5 - Prob. 29RQCh. 5 -
How do planets orbiting the Sun and skaters doing...Ch. 5 - Prob. 31RQCh. 5 - If you hold this textbook out at shoulder height...Ch. 5 - Today at the beach you see the highest of all high...Ch. 5 - Why is the period of an open orbit undefined?
Ch. 5 - In what conditions do Newtons laws of motion and...Ch. 5 - Prob. 36RQCh. 5 - Prob. 37RQCh. 5 - Prob. 38RQCh. 5 - How is gravity related to acceleration? Are all...Ch. 5 - Prob. 40RQCh. 5 - Prob. 41RQCh. 5 - Prob. 42RQCh. 5 - An astronomy textbook is to be dropped from a tall...Ch. 5 - Compared to the strength of Earth’s gravity at its...Ch. 5 - Compare the force of gravity on a 1 kg mass on the...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - If a small lead ball falls from a high tower on...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - Prob. 9PCh. 5 - Describe the shape of the orbit followed by the...Ch. 5 - Prob. 11PCh. 5 - What is the orbital period of a satellite orbiting...Ch. 5 - What would be the escape velocity at the surface...Ch. 5 - Prob. 14PCh. 5 - A moon of Jupiter takes 1.8 days to orbit at a...Ch. 5 - Prob. 1SPCh. 5 - Prob. 2SPCh. 5 - Prob. 1LLCh. 5 - Prob. 2LLCh. 5 - Why is it a little bit misleading to say that this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Using the data in the previous problem for the asteroid Vesta which has a diameter of 520 km and mass of 2.671020kg , what would be the orbital period for a space probe in a circular orbit of 10.0 km from its surface? (b) Why is this calculation marginally useful at best?arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forward
- Consider the Earth and the Moon as a two-particle system. a. Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon.) b. Plot the scalar component of g as a function of distance from the center of the Earth.arrow_forward(a) Show that tidal force on a small object of mass m, defined as the difference in the gravitational force that would be exerted on m at a distance at the near and the far side of the object, due to the gravitational at a distance R from M, is given by Ftidal=2GMmR3r where r is the distance between the near and far side and rR .(b) Assume you are fallijng feet first into the black hole at the center of our galaxy. It has mass of 4 million solar masses. What would be the difference between the force at your head and your feet at the Schwarzschild radius (event horizon)? Assume your feet and head each have mass 5.0 kg and are 2.0 m apart. Would you survive passing through the event horizon?arrow_forwardThe mean diameter of the planet Mercury is 4.88106m , and the acceleration due to gravity at its surface is 3.78m/s2 . Estimate the mass of this planet.arrow_forward
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forward(a) In order to keep a small satellite from drifting into a nearby asteroid, it is placed in orbit with a period of 3.02 hours and radius of 2.0 km. What is the mass of the asteroid? (b) Does this mass seem reasonable for the size of the orbit?arrow_forward
- A massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardAn object of mass m is located on the surface of a spherical planet of mass M and radius R. The escape speed from the planet does not depend on which of the following? (a) M (b) m (c) the density of the planet (d) R (e) the acceleration due to gravity on that planetarrow_forwardA team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?escvesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=4.10×106 g/m3ρ=4.10×106 g/m3 and volume ?=1.25×1012 m3V=1.25×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10−11 N·m2/kg2G=6.67×10−11 N·m2/kg2 .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY