Concept explainers
Harriet McNeil, proprietor of McNeil’s Auto Mall, believes that it is good business for her atuomobile dealership to have more customers on the lot than can be served, as she believes this creates an impression that demand for the automobiles on her lot is high. However, she also understands that if there are far more customers on the lot than can be served by her salespeople, her dealership may lose sales to customers who become frustrated and leave without making a purchase.
Ms. McNeil is primarily concerned about the staffing of salespeople on her lot on Saturday mornings (8:00 a.m. to noon), which are the busiest time of the week for McNeil’s Auto Mall. On Saturday mornings, an average of 6.8 customers arrive per hour. The customers arrive randomly at a constant rate throughout the morning, and a salesperson spends an average of one hour with a customer. Ms. McNeil’s experience has led her to conclude that if there are two more customers on her lot than can be served at any time on a Saturday morning, her automobile dealership achieves the optimal balance of creating an impression of high demand without losing too many customers who become frustrated and leave without making a purchase.
Ms. McNeil now wants to determine how many salespeople she should have on her lot on Saturday mornings in order to achieve her goal of having two more customers on her lot than can be served at any time. She understands that occasionally the number of customers on her lot will exceed the number of salespersons by more than two, and she is willing to accept such an occurrence no more than 10% of the time.
Managerial Report
Ms. McNeil has asked you to determine the number of salespersons she should have on her lot on Saturday mornings in order to satisfy her criteria. In answering Ms. McNeil’s question, consider the following three quesitons:
- 1. How is the number of customers who arrive in the lot on a Saturday morning distributed?
- 2. Suppose Ms. McNeil currently uses five salespeople on her lot on Saturday morning. Using the
probability distribution you identified in (1), what is the probability that the number of customers who arrive on her lot will exceed the number of salespersons by more than two? Does her current Saturday morning employment strategy satisfy her stated objective? Why or why not? - 3. What is the minimum number of salespeople Ms. McNeil should have on her lot on Saturday mornings to achieve her objective?
Trending nowThis is a popular solution!
Chapter 5 Solutions
Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card)
- Conduct the hypothesis test and provide the test statistic and the critical value, and state the conclusion. A person drilled a hole in a die and filled it with a lead weight, then proceeded to roll it 200 times. Here are the observed frequencies for the outcomes of 1, 2, 3, 4, 5, and 6, respectively: 28, 32, 46, 39, 29, 26. Use a 0.025 significance level to test the claim that the outcomes are not equally likely. Does it appear that the loaded die behaves differently than a fair die? Click here to view the chi-square distribution table. The test statistic is (Round to three decimal places as needed.) Chi-square distribution table Area to the Right of the Critical Value Degrees of Freedom 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 1 0.001 0.004 0.016 2.706 3.841 5.024 6.635 2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 7.879 10.597 3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 5…arrow_forwardThe online clothing retailer e-Parel is conducting a study to estimate the average size of the orders placed by visitors to its website. The project manager desires a $60 bound on the error of estimation at 90% confidence. The population standard deviation is unknown, and a “best guess” of $175 is used as the planning value for σ. Use the Distributions tool to help you answer the questions that follow. 0123 Select a Distribution The z-value for a 90% confidence interval of the population mean is . In order to satisfy the requirement of a $60 bound on the error of estimation, a sample size no smaller than is needed.arrow_forwardA local electronics store just received a shipment of 620 HDMI cables. The manager wants to estimate the number of defective HDMI cables in the shipment. Rather than checking every HDMI cable, the manager plans to take a simple random sample of size 62 in order to estimate the proportion of defective HDMI cables in the shipment. If the sample proportion of defective HDMI cables, p̂p̂, is greater than 0.0323 (there are more than two defective HDMI cables in the sample), the manager will file a complaint and request a new shipment. Suppose that the true proportion of defective HDMI cables in the shipment is approximately p = 0.02. What is the expected value of the sample proportion? E(Pˆ)E(P^)= Since the sample is to be drawn from a finite population, and since the sample is 5% of the population size, the finite population correction factor needed when you calculate the standard deviation of the sampling distribution. What is the standard deviation of the…arrow_forward
- An automobile battery manufacturer offers a 39/50 warranty on its batteries. The first number in the warranty code is the free-replacement period; the second number is the prorated-credit period. Under this warranty, if a battery fails within 39 months of purchase, the manufacturer replaces the battery at no charge to the consumer. If the battery fails after 39 months but within 50 months, the manufacturer provides a prorated credit toward the purchase of a new battery. The manufacturer assumes that X, the lifetime of its auto batteries, is normally distributed with a mean of 44 months and a standard deviation of 3.6 months. Use the following Distributions tool to help you answer the questions that follow. (Hint: When you adjust the parameters of a distribution, you must reposition the vertical line (or lines) for the correct areas to be displayed.) 0123 Select a Distribution If the manufacturer’s assumptions are correct, it would need to replace of its…arrow_forwardIn regards to conducting a linear contrast after a one-way ANOVA, can you explain how seemingly arbitrary weights that "emphasize or de-emphasize" certain variables in a linear combination and sum to zero are able to provide information about how certain groups differ from each other? For example, if we havethree groups A, B, and C, and we want tocompare the mean of group A with theaverage of groups B and C, the weights inthis case are 1 for group A, and -0.5 for groupsB and C, which sum to zero. But how do these numbers model the relationship of comparing one group to the average of the other two? Does it have to do with how the math is carried out, such as how the test statistic is created?arrow_forwardCan you simply and intuitively explain the purpose of a contrast to the treatment sum of squares? For example, do orthogonal contrasts partition the treatment sum of squares into additive components that represent the variation due to each contrast? If so, what would be the purpose of this?arrow_forward
- The height of the graph of the probability density function f(x) varies with X as follows (round to four decimal places): X 16 Height of the Graph of the Probability Density Function You are flying out of Terminal 3 at JFK on a Wednesday afternoon between 3:00 and 4:00 PM. You get stuck in a traffic jam on the way to the airport, and if it takes you longer than 12 minutes to clear security, you'll miss your flight. The probability that you'll miss your flight is You have arrived at the airport and have been waiting 10 minutes at the security checkpoint. Recall that if you spend more than 12 minutes clearing security, you will miss your flight. Now what is the probability that you'll miss your flight? ○ 0.5 O 0.25 ○ 0.8333 ○ 0.6667arrow_forwardonsider a random variable x that follows a uniform distribution, with a = 2 and b = 9. What is the probability that x is less than 6? P(x < 6) = 0.2857 P(x < 6) = 0.5714 P(x < 6) = 0.17142 P(x < 6) = 0.4286 What is the probability that x is between 4 and 6? P(4 ≤ x ≤ 6) = 0.2857 P(4 ≤ x ≤ 6) = 0.157135 P(4 ≤ x ≤ 6) = 0.0928525 P(4 ≤ x ≤ 6) = 0.11428arrow_forwardConsider a random variable x that follows a uniform distribution, with a = 8 and b = 14. What is the probability that x is less than 13? P(x < 13) = 0.1667 P(x < 13) = 0.41665 P(x < 13) = 0.24999 P(x < 13) = 0.8333 What is the probability that x is between 11 and 12? P(11 ≤ x ≤ 12) = 0.0541775 P(11 ≤ x ≤ 12) = 0.1667 P(11 ≤ x ≤ 12) = 0.06668 P(11 ≤ x ≤ 12) = 0.091685arrow_forward
- please solve this problem step by step and make it quick pleasearrow_forwardWHAT IS THE CORRECT ANSWER AND WHY?arrow_forwardA common way for two people to settle a frivolous dispute is to play a game of rock-paper-scissors. In this game, each person simultaneously displays a hand signal to indicate a rock, a piece of paper, or a pair of scissors. Rock beats scissors, scissors beats paper, and paper beats rock. If both players select the same hand signal, the game results in a tie. Two roommates, roommate A and roommate B, are expecting company and are arguing over who should have to wash the dishes before the company arrives. Roommate A suggests a game of rock-paper-scissors to settle the dispute. Consider the game of rock-paper-scissors to be an experiment. In the long run, roommate A chooses rock 21% of the time, and roommate B chooses rock 61% of the time; roommate A selects paper 39% of the time, and roommate B selects paper 21% of the time; roommate A chooses scissors 40% of the time, and roommate B chooses scissors 18% of the time. (These choices are made randomly and independently of each…arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning