Concept explainers
(a)
Interpretation:
To determine the number of proton and electron of the ionic species Mg2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Mg2 + species is 12 and 10 respectively.
Explanation of Solution
(b)
Interpretation:
To determine the number of proton and electron of the ionic species Fe2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Fe2 + species is 26 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-2 = 24.
(c)
Interpretation:
To determine the number of proton and electron of the ionic species Fe3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Fe3 + species is 26 and 23 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-3 = 23.
(d)
Interpretation:
To determine the number of proton and electron of the ionic species F-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of F- species is 9 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Mg2 + is 9 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 9+1 = 10.
(e)
Interpretation:
To determine the number of proton and electron of the ionic species Ni2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Ni2 + species is 28 and 26 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Ni2 + is 28 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 28-2 = 26.
(f)
Interpretation:
To determine the number of proton and electron of the ionic species Zn2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Zn2 + species is 30 and 28 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Zn2 + is 30 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 30-2 = 28.
(g)
Interpretation:
To determine the number of proton and electron of the ionic species Co3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Co3 + species is 27 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Co3 + is 27 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 27-3 = 24.
(h)
Interpretation:
To determine the number of proton and electron of the ionic species N3-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of N3 - species is 7 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of N3 - is 7 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 7+3 = 10.
(i)
Interpretation:
To determine the number of proton and electron of the ionic species S2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of S2 - species is 16 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of S2 - is 16 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 16+2 = 18.
(j)
Interpretation:
To determine the number of proton and electron of the ionic species Rb+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Rb+ species is 37and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Rb+ is 37 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 37-1=36.
(k)
Interpretation:
To determine the number of proton and electron of the ionic species Se2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Se2 - species is 34 and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Se2 - is 34 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 34+2 = 36.
(l)
Interpretation:
To determine the number of proton and electron of the ionic species K+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of K+ species is 19 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of K+ is 19 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 19-1 = 18.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK INTRODUCTORY CHEMISTRY
- Follow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forwardDraw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forwardHow are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forward
- How do I solve this Alkyne synthesis homework problem for my Organic Chemistry II class? I have to provide both the intermediate products and the reagents used.arrow_forwardSubstance X is known to exist at 1 atm in the solid, liquid, or vapor phase, depending on the temperature. Additionally, the values of these other properties of X have been determined: melting point enthalpy of fusion 90. °C 8.00 kJ/mol boiling point 130. °C enthalpy of vaporization 44.00 kJ/mol density 2.80 g/cm³ (solid) 36. J.K mol (solid) 2.50 g/mL (liquid) heat capacity 32. J.Kmol (liquid) 48. J.Kmol (vapor) You may also assume X behaves as an ideal gas in the vapor phase. Ex Suppose a small sample of X at 50 °C is put into an evacuated flask and heated at a constant rate until 15.0 kJ/mol of heat has been added to the sample. Graph the temperature of the sample that would be observed during this experiment. o0o 150- 140 130- 120- 110- 100- G Ar ?arrow_forwardMechanism. Provide the mechanism for the reaction below. You must include all arrows, intermediates, and formal charges. If drawing a Sigma complex, draw all major resonance forms. The ChemDraw template of this document is available on Carmen. Br FeBr3 Brarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning