Concept explainers
(a)
Interpretation:
To determine the number of proton and electron of the ionic species Mg2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Mg2 + species is 12 and 10 respectively.
Explanation of Solution
(b)
Interpretation:
To determine the number of proton and electron of the ionic species Fe2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Fe2 + species is 26 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-2 = 24.
(c)
Interpretation:
To determine the number of proton and electron of the ionic species Fe3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Fe3 + species is 26 and 23 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Fe2 + is 26 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 26-3 = 23.
(d)
Interpretation:
To determine the number of proton and electron of the ionic species F-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of F- species is 9 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Mg2 + is 9 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 9+1 = 10.
(e)
Interpretation:
To determine the number of proton and electron of the ionic species Ni2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Ni2 + species is 28 and 26 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Ni2 + is 28 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 28-2 = 26.
(f)
Interpretation:
To determine the number of proton and electron of the ionic species Zn2+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Zn2 + species is 30 and 28 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Zn2 + is 30 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 30-2 = 28.
(g)
Interpretation:
To determine the number of proton and electron of the ionic species Co3+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Co3 + species is 27 and 24 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Co3 + is 27 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 27-3 = 24.
(h)
Interpretation:
To determine the number of proton and electron of the ionic species N3-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of N3 - species is 7 and 10 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of N3 - is 7 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 7+3 = 10.
(i)
Interpretation:
To determine the number of proton and electron of the ionic species S2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of S2 - species is 16 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of S2 - is 16 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 16+2 = 18.
(j)
Interpretation:
To determine the number of proton and electron of the ionic species Rb+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Rb+ species is 37and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Rb+ is 37 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 37-1=36.
(k)
Interpretation:
To determine the number of proton and electron of the ionic species Se2-.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of Se2 - species is 34 and 36 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of Se2 - is 34 and the number of electron of cationic species is the addition of number of proton and charge given. Number of electron = 34+2 = 36.
(l)
Interpretation:
To determine the number of proton and electron of the ionic species K+.
Concept Introduction:
Ions are formed by loss or gain of an electron. If an atom gain the electron it will carry positive charge and if it lose the electron it will carry the positive charge. The electron present in the outermost shell of an atom is mostly responsible for formation of ions. If the number of proton is less than number of electron the species is anionic and if the number of proton is higher than number of electron the species if cationic.
Answer to Problem 24CR
The number of proton and electron of K+ species is 19 and 18 respectively.
Explanation of Solution
Atomic number of an ionic species represents the number of proton so, number of proton of K+ is 19 and the number of electron of cationic species is the difference of number of proton and charge given. Number of electron = 19-1 = 18.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK INTRODUCTORY CHEMISTRY
- In intercalation compounds, their sheets can be neutral or have a negative or positive charge, depending on the nature of the incorporated species and its structure. Is this statement correct?arrow_forwardThis thermodynamic cycle describes the formation of an ionic compound MX2 from a metal element M and nonmetal element X in their standard states. What is the lattice enthalpy of MX2 ? What is the enthalpy formation of MX2 ? Suppose both the heat of sublimation of M and the ionization enthalpy of M were smaller. Would MX2 be more stable? Or less? or impossible to tell without more information?arrow_forward7. Draw the mechanism to describe the following transformation: Note: This is a base catalyzed reaction. So, the last steps must make [OH]- OH [OH]¯ OH Heat Oarrow_forward
- We are practicing calculating for making solutions. How would I calculate this?arrow_forwardBr. , H+ .OH Mg ether solvent H+, H₂O 17. Which one of the compounds below is the final product of the reaction sequence shown above? HO A HO HO OH D B OH HO OH C OH HO OH Earrow_forward8:57 PM Sun Jan 26 Content ← Explanation Page X Content X ALEKS Jade Nicol - Le A https://www-av C www-awa.aleks.com O States of Matter Understanding consequences of important physical properties of liquids ? QUESTION Liquid A is known to have a lower viscosity and lower surface tension than Liquid B. Use these facts to predict the result of each experiment in the table below, if you can. experiment Liquid A and Liquid B are each pumped through tubes with an inside diameter of 27.0 mm, and the pressures PA and PB needed to produce a steady flow of 2.4 mL/s are measured. 25.0 mL of Liquid A are poured into a beaker, and 25.0 mL of Liquid B are poured into an identical beaker. Stirrers in each beaker are connected to motors, and the forces FA and FB needed to stir each liquid at a constant rate are measured. predicted outcome OPA will be greater than PB OPA will be less than PB OPA will be equal to PB It's impossible to predict whether PA or PB will be greater without more information.…arrow_forward
- Show work. Don't give Ai generated solutionarrow_forward5. Please draw in the blanks the missing transition states and the correlated products. Explicitly display relevant absolute stereochemical configuration. MeOH I OMe H Endo transition state, dienophile approaching from the bottom of diene + H ཎྞཾ ཌཱརཱ༔,_o OMe H H OMe Endo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) + Exo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) Exo transition state, dienophile approaching from the top of diene or from the bottom but horizontally flipped (draw one) MeO H H MeO H MeO H MeO H Harrow_forwardH H (1) H C. C C .H (2) (3) Cl H The ideal value for bond angle (1) is (Choose one) and the ideal value for bond angle (3) is (Choose one) degrees, the value for bond angle (2) is (Choose one) degrees, degrees.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning