Concept explainers
(a)
Interpretation:
To use the
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature.
Mole is a ratio between mass and molar mass. It can be calculated as follows:
Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
a | 18.9psi | 0.886L | 220C | 0.047 | 2.1 |
Explanation of Solution
As per the given table we have to find the moles and grams of propane gas. First let us calculate the molar mass of
We have to convert psi into atm using the following formula:
Let us use the ideal gas equation to calculate the number of moles of
Now let us substitute these values in number of moles formula to find the mass in grams:
(b)
Interpretation:
To use the ideal
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:
Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
b | 633mm Hg | 1.993L | -330C | 0.0844 | 3.72 |
Explanation of Solution
As per the given table, we have to find the temperature and grams of propane gas. In sub part a, we have found that the MM is 44g/mol and as given, the number of moles is 0.0844mol therefore let us substitute these values in number of moles formula:
Now we must convert mmHg into atm using the following formula:
Let us use the ideal gas equation to calculate the temperature of
(c)
Interpretation:
To use the ideal gas law to complete the blank columns of the given table for propane gas.
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:
Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
c | 1.876atm | 47.3 L | 750C | 2.842 mol | 125.04 g |
Explanation of Solution
As per the given table, we have to find the volume and grams of propane gas. First we have to convert 0F into K using the following formula:
Let us use the ideal gas equation to calculate the volume of
Now let us substitute these values in number of moles formula to find the mass in grams:
(d)
Interpretation:
To use the ideal gas law to complete the blank columns of the given table for propane gas.
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:
Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
d | 11.2atm | 2244mL | 130C | 1.07 | 47.25 |
Explanation of Solution
The pressure and moles of propane gas needs to be calculated. As per the given information substitute 47.25 g/mol for mass and 44 g/mol for MM in the number of moles formula:
Let us use the ideal gas equation to calculate the pressure of
Want to see more full solutions like this?
Chapter 5 Solutions
PRINCIPLES+REACTIONS
- Part III. Arrange the following carbons (in blue) in order of increasing chemical shift. HO B NH 2 A CIarrow_forward6. Choose the compound that will produce the spectrum below and assign the signals as carbonyl, aryl, or alkyl. 100 ō (ppm) 50 0 7. 200 150 Assign all of the protons on the spectrum below. 8. A B 4 E C 3 ō (ppm) 2 1 0 Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. OH 6 OH 3 2 1 0 4 ō (ppm)arrow_forwardIn the Thermo Fisher application note about wine analysis (Lesson 3), the following chromatogram was collected of nine components of wine. If peak 3 has a retention time of 3.15 minutes and a peak width of 0.070 minutes, and peak 4 has a retention time of 3.24 minutes and a peak width of 0.075 minutes, what is the resolution factor between the two peaks? [Hint: it will help to review Lesson 2 for this question.] MAU 300 200 T 34 5 100- 1 2 CO 6 7 8 9 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 Minutes 3.22 0.62 1.04 O 1.24arrow_forward
- The diagram shows two metals, A and B, which melt at 1000°C and 1400°C. State the weight percentage of the primary constituent (grains of C) that would be obtained by solidifying a 20% alloy of B. 1000°C a+L L+C 900°С 12 α a+C 45 1200 C L+y 140096 C+Y a+ß 800°C 700°C C+B 96 92 a+B 0 10 20 30 40 50 60 70 80 90 100 A % peso B Barrow_forward8. Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. 2 4 3 ō (ppm) OH 4 6 6 СОН 2 1 0arrow_forward7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forward
- e. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve this long problem. Thanksarrow_forward
- 4. An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!) 5. Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl. 200 150 100 50 ō (ppm) 1arrow_forwardSpeaking of composite materials, indicate the correct option:(A). Composite materials can only be: metal-polymer or polymer-polymer.(B). Composite materials can be made up of particles, but not fibers or sheets.(C). When the reinforcing particles are uniformly distributed in a composite material, there may be a greater tendency for it to have isotropic properties.(D). None of the above is correct.arrow_forwardIf we are talking about viscoelastic modulus or viscoelastic relaxation modulus in polymers, indicate the correct option.(A). It reports the variation of elastic behavior as a function of time.(B). It is only useful for defining its glass transition temperature.(C). It only allows us to define the polymer degradation temperature.(D). Neither option is correct.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning