Concept explainers
(a)
Interpretation:
To use the
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature.
Mole is a ratio between mass and molar mass. It can be calculated as follows:

Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
a | 18.9psi | 0.886L | 220C | 0.047 | 2.1 |
Explanation of Solution
As per the given table we have to find the moles and grams of propane gas. First let us calculate the molar mass of
We have to convert psi into atm using the following formula:
Let us use the ideal gas equation to calculate the number of moles of
Now let us substitute these values in number of moles formula to find the mass in grams:
(b)
Interpretation:
To use the ideal
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:

Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
b | 633mm Hg | 1.993L | -330C | 0.0844 | 3.72 |
Explanation of Solution
As per the given table, we have to find the temperature and grams of propane gas. In sub part a, we have found that the MM is 44g/mol and as given, the number of moles is 0.0844mol therefore let us substitute these values in number of moles formula:
Now we must convert mmHg into atm using the following formula:
Let us use the ideal gas equation to calculate the temperature of
(c)
Interpretation:
To use the ideal gas law to complete the blank columns of the given table for propane gas.
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:

Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
c | 1.876atm | 47.3 L | 750C | 2.842 mol | 125.04 g |
Explanation of Solution
As per the given table, we have to find the volume and grams of propane gas. First we have to convert 0F into K using the following formula:
Let us use the ideal gas equation to calculate the volume of
Now let us substitute these values in number of moles formula to find the mass in grams:
(d)
Interpretation:
To use the ideal gas law to complete the blank columns of the given table for propane gas.
Concept introduction:
The ideal gas law states the relationship between the pressure, volume, number of moles and temperature of gas at ideal conditions and it is calculated using the following formula:
Here P is the pressure of the system, V is the volume, n is the number of moles, R is the universal gas constant and T is the temperature. We know that mole is a ratio between mass and molar mass therefore let us substitute this in the ideal gas equation to obtain density:
Mole is a ratio between mass and molar mass. It can be calculated as follows:

Answer to Problem 20QAP
The bank columns in each row are filled in bold. The completed table is as follows:
Sub part | Pressure | Volume | Temperature | Moles | Grams |
d | 11.2atm | 2244mL | 130C | 1.07 | 47.25 |
Explanation of Solution
The pressure and moles of propane gas needs to be calculated. As per the given information substitute 47.25 g/mol for mass and 44 g/mol for MM in the number of moles formula:
Let us use the ideal gas equation to calculate the pressure of
Want to see more full solutions like this?
Chapter 5 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers. OH OH OH OH OH OHarrow_forwardUsing wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forward
- Please draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardGiven a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




