![EBK PHYSICS OF EVERYDAY PHENOMENA](https://www.bartleby.com/isbn_cover_images/8220106637050/8220106637050_largeCoverImage.jpg)
(a)
The centripetal acceleration of the ball.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 1SP
The centripetal acceleration of the ball is
Explanation of Solution
Given Info: The radius of the circle is
Write the equation for the centripetal acceleration.
Here,
Substitute
Conclusion:
Thus the centripetal acceleration of the ball is
(b)
The magnitude of the horizontal component of the tension in the string required to produce the centripetal acceleration.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 1SP
The magnitude of the horizontal component of the tension in the string required to produce the centripetal acceleration is
Explanation of Solution
Given Info: The mass of the ball is
The horizontal component of tension in the string provides the
Write the equation for centripetal force.
Here,
Substitute
Conclusion:
Thus the magnitude of the horizontal component of the tension in the string required to produce the centripetal acceleration is
(c)
The magnitude of the vertical component of the tension required to support the weight of the ball.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 1SP
The magnitude of the vertical component of the tension required to support the weight of the ball is
Explanation of Solution
Given Info: The mass of the ball is
In the vertical direction there is no any motion. This means that the vertical component of tension supports the weight of the ball so that vertical component of tension in the string is equal to the weight of the ball. Thus, total force in the vertical direction is zero.
Write the equation for the weight of the ball.
Here,
The value of
Substitute
Conclusion:
Thus the magnitude of the vertical component of the tension required to support the weight of the ball is
(d)
The vector diagram showing the two components of tension in the string and to estimate the magnitude of the total tension from the diagram.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 1SP
The vector diagram showing the two components of tension in the string is given in figure 1.
Explanation of Solution
The following figure gives the component of tension in the string.
Figure 1
Here,
The magnitude of tension
Figure 2
If base of a triangle gives the horizontal component of tension and height of the triangle gives the vertical component of tension, then the length of the hypotenuse of the triangle will give the magnitude of the total tension in the string.
Write the equation for the tension in the string.
Here,
The horizontal component of the tension is equal to centripetal force and vertical component of tension in the string is equal to weight of the body.
Therefore, Substitute
Conclusion:
The vector diagram showing the two components of tension in the string is plotted in figure 1 and the total tension in the string is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- In the given circuit the charge on the plates of 1 μF capacitor, when 100 V battery is connected to the terminals A and B, will be 2 μF A 1 µF B 3 µFarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forwardAn electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas. Momentum (MeV/c) relativistic classical electron proton Kinetic Energy (MeV)arrow_forward
- Four capacitors are connected as shown in the figure below. (Let C = 20.0 µF.) (a) Find the equivalent capacitance between points a and b. µF (b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forward11. At what point in SHM is the velocity maximum? Displacement maximum?arrow_forward10. Why does the actual pendulum's plot of angle vs time flatten out at very large swing angles? Give a clear physical explanation.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)