
(a)
The average force exerted on the Earth by the sun using Newton’s law of gravitation.
(a)

Answer to Problem 5SP
The average force exerted on the Earth by the sun is
Explanation of Solution
Given Info: The mass of sun is
Write the mathematical expression for Newton’s law of universal gravitation.
Here,
The value of
Substitute
Conclusion:
Thus, the average force exerted on the Earth by the sun is
(b)
The average force exerted on the Earth by the moon.
(b)

Answer to Problem 5SP
The average force exerted on the Earth by the moon is
Explanation of Solution
Given Info: The mass of Earth is
Substitute
Conclusion:
Thus, the average force exerted on the Earth by the moon is
(c)
The ratio of the force exerted on the Earth by the sun to that exerted by the moon and whether the moon will have much of an impact on the Earth’s orbit about the sun.
(c)

Answer to Problem 5SP
The ratio of the force exerted on the Earth by the sun to that exerted by the moon is
Explanation of Solution
Find the ratio of the force exerted on the Earth by the sun to that exerted by the moon.
The value of the force exerted on the Earth by the sun is much greater than the force exerted on Earth by the moon. Therefore the moon will not have much of an impact on the orbit of Earth around sun.
Conclusion:
Thus, the ratio of the force exerted on the Earth by the sun to that exerted by the moon is
(d)
The average force exerted on the moon by the sun and whether the sun will have much impact on the orbit of the moon about the Earth.
(d)

Answer to Problem 5SP
The average force exerted on the moon by the sun is
Explanation of Solution
Given Info: The mass of sun is
Substitute
The Earth and sun exert strong forces on moon. This is because, even though the Earth is much closer to the moon than the sun is, the sun has much larger mass than the Earth. The force of the sun on moon keeps it to remain in the annual orbit about the sun as it moves along with the sun.
Conclusion:
Thus, the average force exerted on the moon by the sun is
Want to see more full solutions like this?
Chapter 5 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





