An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 1MC
To determine
Define temperature.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A fixed amount of an ideal gas is initially at a temperature of 25
°C. What will the new temperature of the gas be if the pressure
and volume are both doubled?
Give your answer in units of [Kelvin]
In testing a new drug, you heat a 0.5-kilogram sample using a hot plate. Assume no energy is lost in the
process (i.e. the process is 100% efficient). The corresponding change in temperature and energy readings
observed during the heating process are graphed as shown. Watch your units!!!!
16000
14000
12000
10000
8000
Q= 72 AT
6000
4000
2000
100
150
200
250
Change in Temperature (AT) [deg F]
What is the specific heat capacity of the fluid in units of joules per gram kelvin? Hint: compare the trendline
equation to the thermal energy equation.
* A
Energy (Q) [J]
A 6.0 kg zinc cannonball has been sitting in the desert sun all day. Its
temperature is 49°C. Night falls on the desert, the wolf howls at the moon,
and the temperature falls to a chilling -20°C. How much heat will the
cannonball release as it cools to air temperature? (The specific heat of zinc
is 390 J-kg^-1°C^-1). *
O 1.6 x 10^5 J
O 3.2 x 1015 J
O 1700 J
O 47000 J
Chapter 5 Solutions
An Introduction to Physical Science
Ch. 5.1 - We talk about temperature, but what does it...Ch. 5.1 - Are there any limits on the lowest and highest...Ch. 5.1 - Show that a temperature of 40 is the same on both...Ch. 5.2 - Prob. 1PQCh. 5.2 - Most substances contract with decreasing...Ch. 5.3 - What is specific about specific heat?Ch. 5.3 - Prob. 2PQCh. 5.3 - Prob. 5.2CECh. 5.3 - How much heat must be removed from 0.20 kg of...Ch. 5.4 - What are the three methods of heat transfer?
Ch. 5.4 - Prob. 2PQCh. 5.5 - Prob. 1PQCh. 5.5 - Prob. 2PQCh. 5.6 - In the ideal gas law, pressure is directly...Ch. 5.6 - Prob. 2PQCh. 5.6 - Prob. 5.4CECh. 5.7 - Prob. 1PQCh. 5.7 - Prob. 2PQCh. 5 - Prob. AMCh. 5 - Prob. BMCh. 5 - Prob. CMCh. 5 - Prob. DMCh. 5 - Prob. EMCh. 5 - Prob. FMCh. 5 - Prob. GMCh. 5 - Prob. HMCh. 5 - Prob. IMCh. 5 - Prob. JMCh. 5 - Prob. KMCh. 5 - Prob. LMCh. 5 - Prob. MMCh. 5 - Prob. NMCh. 5 - Prob. OMCh. 5 - Prob. PMCh. 5 - Prob. QMCh. 5 - Prob. RMCh. 5 - Prob. SMCh. 5 - Prob. TMCh. 5 - Prob. UMCh. 5 - Prob. VMCh. 5 - Prob. WMCh. 5 - Prob. XMCh. 5 - Prob. YMCh. 5 - Prob. 1MCCh. 5 - Which unit of the following is smaller? (5.2) (a)...Ch. 5 - Prob. 3MCCh. 5 - Prob. 4MCCh. 5 - Prob. 5MCCh. 5 - Prob. 6MCCh. 5 - Prob. 7MCCh. 5 - Which of the following has a definite volume but...Ch. 5 - If the average kinetic energy of the molecules in...Ch. 5 - When we use the ideal gas law, the temperature...Ch. 5 - Prob. 11MCCh. 5 - Prob. 12MCCh. 5 - When a bimetallic strip is heated, it bends away...Ch. 5 - Prob. 2FIBCh. 5 - Prob. 3FIBCh. 5 - Prob. 4FIBCh. 5 - Prob. 5FIBCh. 5 - Prob. 6FIBCh. 5 - Prob. 7FIBCh. 5 - The ___ phase of matter has no definite shape, and...Ch. 5 - Prob. 9FIBCh. 5 - In the ideal gas law, pressure is ___ proportional...Ch. 5 - Prob. 11FIBCh. 5 - Prob. 12FIBCh. 5 - When the temperature changes during the day, which...Ch. 5 - Prob. 2SACh. 5 - The two common liquids used in liquid-in-glass...Ch. 5 - An older type of thermostat used in furnace and...Ch. 5 - Heat may be thought of as the middleman of energy....Ch. 5 - When one drinking glass is stuck inside another,...Ch. 5 - Prob. 7SACh. 5 - What does the specific heat of a substance tell...Ch. 5 - When eating a piece of hot apple pie, you may find...Ch. 5 - Prob. 10SACh. 5 - When you exhale outdoors on a cold day, you can...Ch. 5 - Compare the SI units of specific heat and latent...Ch. 5 - Give two examples each of good thermal conductors...Ch. 5 - Prob. 14SACh. 5 - Prob. 15SACh. 5 - Thermal underwear is made to fit loosely. ( Fig....Ch. 5 - What determines the phase of a substance?Ch. 5 - Give descriptions of a solid, a liquid, and a gas...Ch. 5 - Prob. 19SACh. 5 - How does the kinetic theory describe a gas?Ch. 5 - Prob. 21SACh. 5 - Prob. 22SACh. 5 - Prob. 23SACh. 5 - In terms of kinetic theory, explain why a...Ch. 5 - Prob. 25SACh. 5 - Prob. 26SACh. 5 - Prob. 27SACh. 5 - Prob. 28SACh. 5 - What can be said about the total entropy of the...Ch. 5 - Prob. 30SACh. 5 - Prob. 31SACh. 5 - Prob. 1VCCh. 5 - Prob. 1AYKCh. 5 - Prob. 2AYKCh. 5 - Prob. 3AYKCh. 5 - Prob. 4AYKCh. 5 - Prob. 5AYKCh. 5 - Prob. 6AYKCh. 5 - When you freeze ice cubes in a tray, there is a...Ch. 5 - Prob. 8AYKCh. 5 - Prob. 1ECh. 5 - Prob. 2ECh. 5 - Prob. 3ECh. 5 - Prob. 4ECh. 5 - Researchers in the Antarctic measure the...Ch. 5 - Prob. 6ECh. 5 - A college student produces about 100 kcal of heat...Ch. 5 - Prob. 8ECh. 5 - A pound of body fat stores an amount of chemical...Ch. 5 - Prob. 10ECh. 5 - On a brisk walk, a person burns about 325 Cal/h....Ch. 5 - Prob. 12ECh. 5 - How much heat in kcal must be added to 0.50 kg of...Ch. 5 - Prob. 14ECh. 5 - (a) How much energy is necessary to heat 1.0 kg of...Ch. 5 - Equal amounts of heat are added to equal masses of...Ch. 5 - How much heat is necessary to change 500 g of ice...Ch. 5 - A quantity of steam (300 g) at 110C is condensed,...Ch. 5 - Prob. 19ECh. 5 - A fire breaks out and increases the Kelvin...Ch. 5 - A cylinder of gas is at room temperature (20C)....Ch. 5 - A cylinder of gas at room temperature has a...Ch. 5 - A quantity of gas in a piston cylinder has a...Ch. 5 - If the gas in Exercise 23 is initially at room...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardProblem 1: (a) Large beds of rocks are used in some solar-heated homes to store heat. Assume that the specific heat of the rocks is 0.82 J/g-K. Calculate the quantity of heat absorbed by 50.0 kg of rocks if their temperature increases by 12.0 °C. (b) What temperature change would these rocks undergo if they emitted 450 kJ of heat?arrow_forward
- What are the gallons consumed in units of gallons per winter?arrow_forwarda) What is the percentage increase in temperature between 0°C and 26°C when the temperatures are measured in Kelvin? What is the difference between these two temperatures when measured in Kelvin? The outlet of a rocket engine has a cylindrical shape. Its diameter is 2.5m when constructed in the factory at 18°C. Given a = 6 x 10-6K-1 for the alloy used, what will its diameter be (in metres) at its operating temperature of 600°C ? d) What will the cross-sectional area of the outlet be (in m²) at this temperature?arrow_forwardWhen it rains, water vapor in the air condenses into liquid water, and energy is released. (a) How much energy is released when 0.0356 m (1.40 inch) of rain falls over an area of 2.59×106 m² (one square mile)? (b) If the average energy needed to heat one home for a year is 1.50x10¹1 J, how many homes could be heated for a year with the energy determined in part (a)? (a) Number i (b) Number 1 Units Unitsarrow_forward
- A 15-kg chunk of ice at -31°C is mixed with 48 kg of water at 55°C. Find the temperature of the resulting mixture, assuming no heat gain or loss with the environment. Express your answer in degrees Celsius. (What equations can I use to solve this?)arrow_forwardIn the ideal-gas equation, could an equivalent Celsius temperature be used instead of the Kelvin one if an appropriate numerical value of the constant R is used? Why or why not?arrow_forwardTwo metal rods, one lead and one brass, are each clamped at one end (Fig. 6). At 0.0°C, the rods are each 40.0 cm long and are separated by 0.034 cm at their unfastened ends. At what temperature will the rods just come into contact and determine the change in length of the lead. (Assume that the base to which the rods are clamped undergoes a negligibly small thermal expansion.arrow_forward
- Assume Lake Michigan contains 4.90 x 1012 m³ of water, and assume the water's density is that of water at 20°C and 1 atm. (a) How much energy (in J) is required to raise the temperature of that volume of water from 12.2°C to 24.4°C? 4.1E19 From the density of water and the volume, what is the mass of the water? What is specific heat? How is it related to the energy input, mass, and temperature change? Use it to solve for the energy. Be careful with units. J (b) How many years would it take to supply this amount of energy by using a power of 1,400 MW generated by an electric power plant? 926 How is power related to energy and time? Knowing the energy from part (a), can you find the time? Be careful with units. Make sure you convert the time in seconds to years. yrarrow_forwardThe average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 27.3°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground. m3 37.0 5.00 m 8.00 m 10.0 marrow_forwardThe intensity of solar radiation above the earth’s atmosphere is about 1300 W/m2. The earth’s average surface temperature is relatively constant over geological time spans, so the energy the earth receives from the sun must be balanced by energy the earth reradiates in all directions into space. If the earth were to have a uniform temperature over its entire surface, what would the temperature be?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning