![College Physics: A Strategic Approach (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_largeCoverImage.gif)
Concept explainers
An object is subject to two forces that do not point in opposite directions. Is it possible to choose their magnitudes so that the object is in equilibrium? Explain.
![Check Mark](/static/check-mark.png)
To find: Whether the object is in equilibrium or not.
Answer to Problem 1CQ
The object is not in equilibrium.
Explanation of Solution
Given data:
An object is subjected to two forces that do not point in opposite directions. It is required to find whether the object is in equilibrium condition or not.
Formula used:
Write the expression for an equilibrium condition of the forces on the object as follows:
Here,
Explanation:
From Equation (1), if the sum of the forces acting on the object is zero, then the object will be in equilibrium condition.
If the two forces are equal in magnitude and opposite to each other, then the two forces cancel out and the net force becomes zero.
From the given data, the two forces are not in the opposite directions. Therefore, the two forces do not cancel each other out and the net force will be available on the object. Thus, the object is not in the equilibrium condition.
Conclusion:
Thus, the object is not in equilibrium.
Want to see more full solutions like this?
Chapter 5 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Concepts of Genetics (12th Edition)
Microbiology with Diseases by Body System (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- No chatgpt plsarrow_forwardNo chatgpt pls will upvotearrow_forwardA shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. Calculate. Note: For each question draw a diagram to show the vector/s. Show all the steps and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise. Answer all parts and show all work please.arrow_forward
- A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). Calculate: Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.)arrow_forwardIf I stand next to a wall on a frictionless skateboard and push the wall with a force of 25 N, what would my acceleration be if my mass is 75 kg?arrow_forwardWhat is the direction of the magnetic force on the current shown in the following figures?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)