
Concept explainers
(a)
To draw: A diagram showing what a head-antibody-myosin complex might look like at the molecular level.
Introduction:
Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria and virus. They are also known as immunoglobulins. An antigen is a foreign particle that induces the production of antibodies. These protein structures are the three-dimensional arrangement of atoms in a peptide chain.
(b)
To determine: The reason for the requirement of ATP for the beads to move along the actin fibers.
Introduction:
Adenosine triphosphate (ATP) is the energy currency of the cells that are produced during glucose
(c)
To determine: The reason for the failure of experiment if antibodies used were bound to the part of S1 and, if antibodies were bound to actin.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. Myosin proteins are known to interact with the actin fibers for motility processes. Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria ad virus.
(d)
To determine: Why might trypsin attack the specific single peptide bond first rather than other peptide bonds in myosin.
Introduction:
Heavy meromyosin (HMM) and short heavy meromyosin (SHMM) are the two products of the digestion of the meromyosin. Meromyosin proteins can be digested by using trypsin in the process called proteolysis. Meromyosin is a part of the myosin protein These together form the muscle fiber called sacromere.
(e)
To determine: The model (S1 or hinge) that is consistent with the results observed in subpart (d).
Introduction:
The S1 fragment in the myosin acts as a motor domain and is involved in the contraction of the muscle. Hinge region is the region where cleavage with papain separates the immunoglobulin in two portions Fab (antigen-binding) portion and Fc (crystallizable fragment). Thehe region where they get separated known as hinge region.
(f)
To provide: A possible explanation for the increased speed of the beads with increasing myosin density.
Introduction:
The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin. Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals.
(g)
To provide: A possible explanation for the plateauing of the speed of the beads at high myosin density.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin.
(h)
To determine: The reason why SHMM was still capable of moving beads along the actin fibers.
Introduction:
Short heavy meromyosin (SHMM) and heavy meromyosin (HMM) is a product of digestion of meromyosin by the trypsin enzyme. Meromyosin is part of the myosin protein. Myosin is the muscle protein that along with actin involved in the muscle contraction.
(i)
To provide: A suitable explanation of the protein that remains intact and functional even though the polypeptide backbone has been cleaved and is no longer continuous.
Introduction:
Proteins are the

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- what are the different classes and some examples of neuroprotectants that can be used to treat, prevent, or combat neurotoxicity/a neurotoxicant...for example, antioxidants, nutraceuticals, etc.,..?arrow_forwardImagine that aldolase can react with the seven carbon molecule Sedoheptulose-1,7-bisphosphate (below). Use the mechanism to predict the two products generated. Please draw out the stereochemistry in a fischer projection.arrow_forwardSodium borohydride (NaBH4) is a potent inhibitor of aldolase. It is known to ONLY inhibit theenzyme when it is complexed with substrate. Treatment of the enzyme alone has no effect.What is the mechanism for this inhibition? Please draw out the mechanism and show how it inhibits this.arrow_forward
- Show the fate of the proton on the 4-Oxygen molecule of F-1,6-BP. Please include a drawing showing the electron flow that occurs.arrow_forward1. Which one is the major organic product obtained from the following aldol condensation? O NaOH, H₂O heat A B C D Earrow_forwardAn organic chemist ordered the wrong item. She wanted to obtain 1-hydroxy-2-butanone, butinstead ordered 2-hydroxybutyraldehyde. As a good biochemist, show how the organic chemistcould use biological catalysis to make her desired compound. Please show the mechanism by drawing.arrow_forward
- Show the fate of the hydrogen on carbon-2 of glucose. Please draw out the structure using curve arrows to show electron flow.arrow_forward3. Which one of the compounds below is the major product formed by the reaction sequence shown here? CH3 + CH3NO2 NaOH H2, Ni ? nitromethane acetophenone OH OH HO HN- u x x x x Ph A HO -NH2 HO H Ph Ph Ph N- H B Ph NH2 D Earrow_forward4. Only ONE of the five compounds below can be prepared by an aldol condensation in which a single carbonyl compound is treated with base. Which one is it? To solve this problem, reverse the aldol condensation that formed each of these molecules to find out what two molecules came together to make the products. The one in which the two molecules are identical is the answer. Ph Ph ཚིག གནས ག ནཱ ཀ ན ཀནཱ A Ph H B Ph Ph H D Ph. Ph Ph E Harrow_forward
- 5. Which one is the major organic product obtained from the following reaction sequence? First, equimolar amounts of cyclopentanone and LDA are mixed at -78°C. Then propionaldehyde (propanal) is added. Addition of aqueous acid completes the process. LDA, -78°C. 1. 2. H₂O* H A B H 0 D H H Earrow_forward2. Which one is the major organic product obtained from the following reaction? NaOH, H₂O heat A B C D Earrow_forwardCH3CH2CHO + propanal PhCH2CHO 2-phenylacetaldehyde mixture of four products NaOH 10. In the crossed aldol reaction of propanal and 2-phenylacetaldehyde shown above, a mixture of four products will be formed. Which ONE of the compounds below will NOT be formed in this crossed aldol reaction? OH Ph A H OH OH Ph H B OH OH H H H Ph Ph C Ph D Earrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





