
Concept explainers
(a)
To draw: A diagram showing what a head-antibody-myosin complex might look like at the molecular level.
Introduction:
Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria and virus. They are also known as immunoglobulins. An antigen is a foreign particle that induces the production of antibodies. These protein structures are the three-dimensional arrangement of atoms in a peptide chain.
(b)
To determine: The reason for the requirement of ATP for the beads to move along the actin fibers.
Introduction:
Adenosine triphosphate (ATP) is the energy currency of the cells that are produced during glucose
(c)
To determine: The reason for the failure of experiment if antibodies used were bound to the part of S1 and, if antibodies were bound to actin.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. Myosin proteins are known to interact with the actin fibers for motility processes. Antibodies are the Y-shaped proteins which provide immunity to the body by neutralizing antigens such as bacteria ad virus.
(d)
To determine: Why might trypsin attack the specific single peptide bond first rather than other peptide bonds in myosin.
Introduction:
Heavy meromyosin (HMM) and short heavy meromyosin (SHMM) are the two products of the digestion of the meromyosin. Meromyosin proteins can be digested by using trypsin in the process called proteolysis. Meromyosin is a part of the myosin protein These together form the muscle fiber called sacromere.
(e)
To determine: The model (S1 or hinge) that is consistent with the results observed in subpart (d).
Introduction:
The S1 fragment in the myosin acts as a motor domain and is involved in the contraction of the muscle. Hinge region is the region where cleavage with papain separates the immunoglobulin in two portions Fab (antigen-binding) portion and Fc (crystallizable fragment). Thehe region where they get separated known as hinge region.
(f)
To provide: A possible explanation for the increased speed of the beads with increasing myosin density.
Introduction:
The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin. Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals.
(g)
To provide: A possible explanation for the plateauing of the speed of the beads at high myosin density.
Introduction:
Myosins are the muscle proteins that carry out the muscle contraction and provide a wide range of motility in humans and other animals. The beads that are involved in the bead-antibody-myosin complexes are coated with the myosin and move along with the actin fiber that are associated with the myosin.
(h)
To determine: The reason why SHMM was still capable of moving beads along the actin fibers.
Introduction:
Short heavy meromyosin (SHMM) and heavy meromyosin (HMM) is a product of digestion of meromyosin by the trypsin enzyme. Meromyosin is part of the myosin protein. Myosin is the muscle protein that along with actin involved in the muscle contraction.
(i)
To provide: A suitable explanation of the protein that remains intact and functional even though the polypeptide backbone has been cleaved and is no longer continuous.
Introduction:
Proteins are the

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- 9. Which one of the compounds below is a major final product of the reaction sequence shown at the right? A) para-bromonitrobenzene C) meta-bromoaniline B) meta-bromonitrobenzene D) para-bromoaniline 1. HNO3, H2SO4 2. Br₂, FeBr3 3. H₂/Ni (3 atm) E) ortho-bromoanilinearrow_forward10. This reaction sequence includes an intramolecular Friedel-Crafts reaction. Which of the compounds below is expected to be the major product? PhCH2CH2CH2COOH 4-phenylbutanoic acid SOCI₂ AICI 3 A B C D Earrow_forward5. Which one is the major organic product obtained from the following reaction sequence? A B C OH i 1. NaBH4 CI 2. H₂O, H+ AICI 3 D OH Earrow_forward
- 1. Which one is the major organic product obtained from the reaction of toluene and cyclopentanol in the presence of H3PO4, as shown here? CH3 CH3 CH3 CH3 CH3 H3PO4 A B с D E OHarrow_forwardAscorbic acid is a diprotic, with ionizations of: pKa1 = 4.10; pKa2 =11.80. You need to make 350 mL of an ascorbate buffer that is pH 5.05, andyou have 1.5 mM stock solutions of :ascorbic acidmonosodium ascorbatedipotassium ascorbateHow much 1.5 mM monosodium ascorbate do you use to make yoursolution? Answer in mL and report your value to three signicant gures.Please type only the number.arrow_forward1. What is the abbreviated form of the name for the molecule below. Punctuate it correctly ( image attached) 2. How much ATP is formed by the complete oxidation of lignocerate? Show stepsarrow_forward
- fill in the blank and circle the active site for each molecule. urgent!arrow_forwardfill in the table and circle the active sitearrow_forwardThe two half reactions for beginning and end of the electron transport chain are given below in standard form. Calculate & for the overall process. Using the Nernst equation (AG° = -n Fo, F= 96.485 kJ/volt mol), calculate AG°. Explain the need for a stepwise process in the electron transport chain. NAD* + H+ + 2 e- = NADH ½ 0г + 2H+ + 2е- = H20 = -0.32v E = +0.82Varrow_forward
- answer the questions and the example steps should be from carbohydrates glycolysis and citric acid cycle. Please put down reactions and structuresarrow_forwardidentify the general type of reaction catalyzed and an example step from glycolisis structure for each of the following enzymes/ co factor Kinase, isomerase, mutase, dehydrogenase, NAD+ , FADarrow_forwardfill in the blanks with the missing structures and give namesarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON





