For Exercises 1—16, identify which functions shown here ( f , g , h , and so on) have the given characteristics. f ( x ) = − 3 sec ( 2 x + π ) g ( x ) = − 3 cos ( 1 2 x − π 4 ) h ( x ) = 3 sin ( − 1 2 x − π 4 ) k ( x ) = sin ( π 2 x ) + 3 m ( x ) = 2 csc ( 2 x − π 4 ) − 3 n ( x ) = 3 tan ( x − π 2 ) p ( x ) = − 2 cot ( 1 2 x + π ) t ( x ) = − 3 + 2 cos x 15. Has a phase shift of π 2
For Exercises 1—16, identify which functions shown here ( f , g , h , and so on) have the given characteristics. f ( x ) = − 3 sec ( 2 x + π ) g ( x ) = − 3 cos ( 1 2 x − π 4 ) h ( x ) = 3 sin ( − 1 2 x − π 4 ) k ( x ) = sin ( π 2 x ) + 3 m ( x ) = 2 csc ( 2 x − π 4 ) − 3 n ( x ) = 3 tan ( x − π 2 ) p ( x ) = − 2 cot ( 1 2 x + π ) t ( x ) = − 3 + 2 cos x 15. Has a phase shift of π 2
Solution Summary: The author explains the properties of the general Sine and Cosine functions.
For Exercises 1—16, identify which functions shown here (f, g, h, and so on) have the given characteristics.
f
(
x
)
=
−
3
sec
(
2
x
+
π
)
g
(
x
)
=
−
3
cos
(
1
2
x
−
π
4
)
h
(
x
)
=
3
sin
(
−
1
2
x
−
π
4
)
k
(
x
)
=
sin
(
π
2
x
)
+
3
m
(
x
)
=
2
csc
(
2
x
−
π
4
)
−
3
n
(
x
)
=
3
tan
(
x
−
π
2
)
p
(
x
)
=
−
2
cot
(
1
2
x
+
π
)
t
(
x
)
=
−
3
+
2
cos
x
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY