
Electronics Fundamentals: Circuits, Devices & Applications
8th Edition
ISBN: 9780135072950
Author: Thomas L. Floyd, David Buchla
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 14ST
To determine
Total power dissipation in the circuit.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please find Vo using Mesh analysis
Find Vo using mesh analysis
c)
An RC circuit is given in Figure Q1.1, where Vi(t) and Vo(t) are the input and
output voltages.
(i) Derive the transfer function of the circuit.
(ii) With a unit step change of Vi(t) applied to the circuit, derive the time
response of Vo(t) with this step change.
Vi(t)
C₁
Vo(1)
R₂ C2 C3 |
R = 20 ΚΩ = 50 ΚΩ
C=C2=C3=25 μF
Figure Q1.1. RC circuit.
Chapter 5 Solutions
Electronics Fundamentals: Circuits, Devices & Applications
Ch. 5 - Prob. 1TFQCh. 5 - The total resistance of parallel resistors is...Ch. 5 - The product-over-sum rule works for any number of...Ch. 5 - In a parallel circuit, the voltage is larger on a...Ch. 5 - Prob. 5TFQCh. 5 - Prob. 6TFQCh. 5 - Prob. 7TFQCh. 5 - In the current-divider formula, Ix=(RT/Rx)lT, the...Ch. 5 - Prob. 9TFQCh. 5 - The total power dissipated by parallel resistors...
Ch. 5 - In a parallel circuit, each resistor has the same...Ch. 5 - When a 1.2k resistor and a 100 resistor are...Ch. 5 - Prob. 3STCh. 5 - Eight resistors are in parallel. The two...Ch. 5 - When an additional resistor is connected across an...Ch. 5 - If one of the resistors in a parallel circuit is...Ch. 5 - The currents into a node are along two paths. One...Ch. 5 - Prob. 8STCh. 5 - Prob. 9STCh. 5 - Prob. 10STCh. 5 - In a certain three-branch parallel circuit,...Ch. 5 - Prob. 12STCh. 5 - Prob. 13STCh. 5 - Prob. 14STCh. 5 - Determine the cause for each set of symptoms....Ch. 5 - Prob. 2TSCCh. 5 - Prob. 3TSCCh. 5 - Prob. 4TSCCh. 5 - Determine the cause for each set of symptoms....Ch. 5 - Connect the resistors in Figure 5-57 in parallel...Ch. 5 - Determine whether or not all the resistors in...Ch. 5 - Determine the total resistance between pins 1 and...Ch. 5 - The following resistors are connected in parallel:...Ch. 5 - Find the total resistance between nodes A and B...Ch. 5 - Calculate RT for each circuit in Figure 5-60.Ch. 5 - What is the total resistance of eleven 22k...Ch. 5 - Five 15, ten 100, and two 10 resistors are all...Ch. 5 - Determine the voltage across and the current...Ch. 5 - The source voltage in Figure 5-61 is 100 V. How...Ch. 5 - Prob. 11PCh. 5 - The resistance of a 60 W bulb is approximatey 240....Ch. 5 - What is the current in each resistor for the...Ch. 5 - Four equal-value resistors are connected in...Ch. 5 - The following currents are measured in the same...Ch. 5 - There is a total of 500mA of current into five...Ch. 5 - How much current is through R2 and R3 in Figure...Ch. 5 - A trailer has four running lights that draw 0.5A...Ch. 5 - Assume the trailer in Problem 18 has two brake...Ch. 5 - A 10k resistor and a 15k resistor are in parallel...Ch. 5 - How much branch current should each meter in...Ch. 5 - Prob. 22PCh. 5 - Five parallel resistors each handle 40mW. What is...Ch. 5 - Prob. 24PCh. 5 - Six light bulbs are connected in parallel across...Ch. 5 - If one of the bulbs burns out in Problem 25, how...Ch. 5 - In Figure 5-67, the current and voltage...Ch. 5 - Prob. 28PCh. 5 - Find the open resistor in Figure 5-69.Ch. 5 - From the ohmmeter reading in Figure 5-70, can you...Ch. 5 - In the circuit of Figure 5-71, determine...Ch. 5 - The total resistance of a parallel circuit is 25....Ch. 5 - What is the current through each resistor in...Ch. 5 - A certain parallel circuit consists of only 12W...Ch. 5 - Find the values of the unspecified quantities...Ch. 5 - What is the total resistance between terminal A...Ch. 5 - What value of R2 in Figure 5-75 will cause...Ch. 5 - Determine the total current from the source and...Ch. 5 - The electrical circuit in a room is protected with...Ch. 5 - The total resistance of a parallel circuit is 25....Ch. 5 - Prob. 41PCh. 5 - If the total resistance in Figure 5-78 is 200,...Ch. 5 - Determine the unknown resistances in Figure 5-79.Ch. 5 - There is a total of 250 mA into a parallel circuit...Ch. 5 - Prob. 45PCh. 5 - Develop a test procedure to check the circuit in...Ch. 5 - A certain parallel circuit consists of five 12W...Ch. 5 - For the circuit board shown in Figure 5-82,...Ch. 5 - For the circuit board shown in Figure 5-82,...Ch. 5 - Open file P05-50; files are found at...Ch. 5 - Open file P05-51. Using current measurements,...Ch. 5 - Open file P05-52. Using current measurements,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- c) An RC circuit is given in Figure Q1. vi(t) and vo (t) are the input and output voltages. (i) Derive the transfer function of the circuit. (ii) With a unit step change vi(t) applied to the circuit, derive and sketch the time response of the circuit. R₁ R2 v₁(t) R3 C₁ v₁(t) R₁ = R₂ = 10 k R3 = 100 kn C₁ = 100 μF Figure Q1. RC circuit.arrow_forwardc) A RC circuit is given in Figure Q1.1. Vi(t) and Vo(t) are the input and output voltages. (i) Derive the transfer function of the circuit. (ii) With a unit step change of Vi(t) applied to the circuit, derive the time response of the circuit. C₁ C₂ Vi(t) Vo(1) R₁ C₂ R-25 k C=C2=50 µF Figure Q1.1. RC circuit.arrow_forwardAnswer 2 questions for 100 marks Question 1: Process Design [25 marks] An incomplete process design of a flash drum distillation unit is presented in Figure 1. The key variables to be controlled are flow rate, temperature, composition, pressure and liquid level in the drum. Disturbances are observed in the feed temperature and composition. Heat exchangers Drum Vapor Liquid Pump Figure 1: Incomplete process design of a distillation unit Answer the following questions briefly and in a qualitative fashion: a) Determine which sensors and final elements are required so that the important variables can be controlled. Sketch them in the figure using correct instrumentation tags. Describe briefly what instruments you will use and where they should be located. Reflect on the potential presence of a flow controller upstream of your process design (not shown in the diagram). How would this affect the level controller in the drum? b) [10 marks] Describe briefly how you qualitatively determine the…arrow_forward
- Answer 2 questions for 100 marks Question 1: Process Design [25 marks] An incomplete process design of a flash drum distillation unit is presented in Figure 1. The key variables to be controlled are flow rate, temperature, composition, pressure and liquid level in the drum. Disturbances are observed in the feed temperature and composition. Heat exchangers Drum Vapor Liquid Pump Figure 1: Incomplete process design of a distillation unit Answer the following questions briefly and in a qualitative fashion: a) Determine which sensors and final elements are required so that the important variables can be controlled. Sketch them in the figure using correct instrumentation tags. Describe briefly what instruments you will use and where they should be located. Reflect on the potential presence of a flow controller upstream of your process design (not shown in the diagram). How would this affect the level controller in the drum? b) [10 marks] Describe briefly how you qualitatively determine the…arrow_forwardQuestion 2: Process Control [75 marks] As a process engineer, you are tasked to control the process shown in Figure 2. For biomedical engineers, the process could be interpreted as the injection of a solution of a medication compound A, with initial concentration CAO, into a human body, simplified as a Continuously Stirred Tank Reactor (CSTR). Therefore, your task is to analyse and model this process. The equipment consists of a mixing tank, mixing pipe and CSTR. F₁ Сло CA2 V₁ mixing pipe F4 CA4 F3 CA3 mixing tank Fs CAS Vs stirred-tank reactor Figure 2: Mixing and reaction processes Assumptions used for modelling are as follows: I. Both tanks are well mixed and have constant volume and temperature. II. All pipes are short and contribute negligible transportation delay, III. All flow rates are constant. All densities are constant and uniform throughout. IV. The first tank is a mixing tank. V. VI. The mixing pipe has no accumulation, and the concentration CA3 is constant The second tank…arrow_forwarda) Reflect on the assumptions and briefly explain their implications for your model. Do you agree with the assumptions? If not, briefly suggest improved assumptions. [6 marks] b) Derive a linear(ised) model (algebraic or differential equation) relating C'A2(t) to C'Ao(f). How do you define your system? What type of balance do you need to solve for this purpose? [12 marks] c) Derive a linear(ised) model (algebraic or differential equation) relating C'A4(t) to C'A2(f). Show your balance equation. [12 marks] d) Derive a linear(ised) model (algebraic or differential equation) relating C'A5(t) to C'A4(f). Show your balance equation. [12 marks] e) Combine the models in parts (a) to (c) into one equation relating C'A5 to C'Ao using Laplace transforms. [15 marks] f) Is the response (for example to step input) stable or unstable? Is the response periodic? Is the response damped? [6 marks] g) Carry out an inverse Laplace Transform for C'Ao(s) = A CAO/s (step function) to find C'A5(t) in the time…arrow_forward
- I need helparrow_forwardThe values of the circuit elements in the circuit shown in the figure are given below.The initial energies of the capacitors and the coil are zero.Accordingly, how many volts is the voltage vo at t=0.55 seconds? vs(t) = 2cos(4000t)u(t) VR = 19 ohmL = 20 HC1 = 1/5 FC2 = 1/2 Farrow_forwardcould you please show steps on how the answer was derived. Vo(t)=3.922 cos(1000t-71.31')Varrow_forward
- can you show the steps to answer question.arrow_forwardQ2. Figure Q2 shows a block diagram with an input of C(s) and an output R(s). a) C(s) K₁ R(s) K2 1 + 5s 1+2s Figure Q2. Block diagram of control system. Simply the block diagram to get the transfer function of the system C(s)/R(s). b) What is the order of the system? c) What is the gain of the system? d) Determine the values of K₁ and K₂ to obtain a natural frequency w of 0.5 rad/s and damping ratio of 0.4. e) What is the rise time and overshoot of the system with a unit step input?arrow_forwardQ4. a) A purely derivative controller (i.e. with a zero at the origin only) is defined by an improper transfer function. Considering its asymptotic behaviour, explain why a purely derivative controller is difficult to implement in practice. Relate your explanation to the potential limitations on system performance. b) Discuss the potential issues faced by a control system with a large cut-off frequency. Relate your discussion to the implications on system performance. c) The transfer function of a lag compensator is given by 2 KPID(S) = 2.2++0.2s S By using the asymptotic approximation technique: (i) Obtain the standard form and corner frequency for each individual component of KPID(S). (ii) Clearly describe the asymptotic behaviour of each individual component of KPID(S).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Kirchhoff's Rules of Electrical Circuits; Author: Flipping Physics;https://www.youtube.com/watch?v=d0O-KUKP4nM;License: Standard YouTube License, CC-BY