FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 129P
Consider water flow in a piping network. The pressure,velocity, and elevation at a specified point (point 1) of the flow are 300 kPa. 2.4 ms, and 5 m. The velocity and elevation at point 2 are 1.9 ni/s and 18 in. respectively. Take the correction factor to be 1. If the irreversible head loss between point 1 and point 2 of the pipe is 2 in. the pressure of water at point 2 is
(a) 286 kPa
(b)230kPa
(c) 179 kPa
(d) 154 kPa
(e) 101 kPa
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water flows through a corner valve at a flow rate of Q=0.75 m³/s . The pressure just
upstream of the valve is P₁ = 500 kPa and the pressure just downstream is P₂ = 300 kPa. The
inside pipe diameters of the valve inlet and exit are respectively, D₁ = 5 cm and D₂ = 12 cm.
If the flow through the valve occurs in a horizontal plane, determine the head loss, h₂ (in
meters) and the rate of loss of available energy (in W) across the valve.
D2
Di
The water is flowing through a pipe having diameters 45 cm and 15 cm at sections 1and 2 respectively. The rate of flow through pipe is 35 litres/s. The section 1 is 6 m above datum and
section 2 is 4 m above datum. If the pressure at section 1 is 36 N/cm?,
find the following by neglecting losses:
(ENTER ONLY THE VALUES BY REFERRING THE UNIT GIVEN IN BRACKETS)
0) Area of cross section of section1 (unit in m) =
Area of cross section of section2 (unit in m)-
velocity at section 1 (unit in m/s)
velocity at section 2 (unit in m/s)-
0i) difference in datum head (Unit in m) =
Pressure head at section 1 (Unit in m) =
pressure head at section 2 (unit in m) -
A pump is being used to transport a liquid food product (density p=1000kg/m^3, viscosity 0.001 Pa s) from holding tank to filling a machine at a mass flow rate of 2 kg/s. The liquid level in the holding tank is 10 m above the pump, and the filling machine is 5 m above the pump. There is 100 m of 2-in nominal diamter sanitary pipe between the holding tank and the filling machine, wiht one open globe valve and four regular 90° flanged elbows in the system. Within the system, there is a heat exchange which causes 100 kPa of pressure drop due to friction. The holding tank is open to atmosphere, and filling machine is running at a pressure of 1.5 atm. The diamter of the filling machine pipe is 3cm.
A: What is the volume flow rate of the system?
B: What is the diamete of the pipe?
C: What is the average velocity inside the pipe?
D: What is the reynolds number of the flow in the pipe?
E: What is the flowing type?
Chapter 5 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. A pump is used to move water (p = 1000 kg/m³) from a lake into a large tank as shown below. The height of the water surface in the tank is 20 meter from the lake surface. The total length of the pipe is L = 100 meter and the pipe diameter is D = 1 meter. The major head loss is estimated as h = LV2 where the pipe friction factor f is assumed to be 0.025. Here, V is the flow velocity in the f= D 2g pipe. Determine the flowrate in the pipe. The pump power is W = 2000 Watts 20 meter Pumparrow_forwardAir flows upward at a volumetric flow rate of 0.045 m3/s through an inclined pipe whose diameter is reduced through a reducer. The differential height between fluid levels of the two arms of a water manometer attached across the reducer is to be determined. The diameter at cross-section 1 is 0.06 m, and 0.04 m at cross-section 2. The atmospheric pressure is 110 kPa, and the air temperature is 50°. Hint: A differential height between points 1 and 2 has not been specified. What assumption can you make?arrow_forwardB10arrow_forward
- Flowrate of water through bend pipe (90o) is 0.21 m3/s. The pipe diameter at the inlet is 150 mm andthe outlet diameter is 75 mm. The outlet is higher than the inlet by 2 m. Frictional losses in the pipe isequal a loss factor of 0.5 applied to the inlet velocity head. The pressure head at the inlet is 8.6 m andthe volume of water in the bend is 0.6 m3. Calculate the resultant force and its direction.arrow_forwardThe velocity and pressure at the entrance to a horizontal pipe are 1 m/s and 120 kPa respectively The velocity and pressure at the exit of the pipe are 1.8 m/s and 100 kPa respectively. What is the head loss (h) between the entry and exit of the pipe? 1.81 m a. 192 m b. 2.14 m 2.03 m Od. The velocity and pressure at the entrance to a horizontal pipe are 0.7 m/s and 101040 Pa respectively. The velocity at the exit of the pipe is 1.6 m/s. What is the pressure at the exit of the pipe? 100 kPa O a 99.52 kPa 101.26 kPa O c. 102.57 kPa d.arrow_forwardWater flows between two reservoirs A & B. The water level in A is 400 m AOD and in B is 385m AOD. The reservoirs are connected by a 400mm diameter pipe, 1200m in length, which has a Darcy friction factor of 0.025. The lowest point in the pipeline is a distance of 400m from A and has a level of 360m AOD. Determine the rate of flow through the pipeline and the pressure at the lowest point.arrow_forward
- Water from a reservoir is pumped over a hill through a 450 mm diameter and an absolute pressure of 1.0 kg/cm2 is maintained at the summit. Water discharge is 30 m above the reservoir. The quantity pumped is 0.5 m3/s. Frictional losses in the discharge and suction pipe, and pump is equivalent to 1.5 m. The speed of pump is 800 rpm. Determine the following: a.Water power of the pump b.New value of discharge if the speed of the pump is increased to 1000 rpm c.New value of head if the speed of the pump is increased to 1000 rpm d.New value of power if the speed of the pump is increased to 1000 rpm Please solving using the methodology (Given, requires, schematic diagram, solution and discussion)arrow_forwardOil with density 894 kg/m^3 and viscosity 2.33 kg/m.s flows in a 415 meter long 40-cm-diameter horizontal pipeline at an average velocity of 0.6 m/s. Determine the pumping power required in kW to overcome the pressure losses and to maintain the flow of oil in the pipe. Make sure to check Reynolds number first to identify the type of flow and use the proper equation.arrow_forward(a) A pump draws water (50°F) from a reservoir, where the water-surface elevation is 520 ft and forces the water through a pipe 5000 ft long and 1 ft in diameter. This pipe then discharges the water into a reservoir with water-surface elevation of 620 ft. The flow rate is 7.85 ft/s and the head loss in the pipe is given by hi = 0.01 where, Land D is the length and diameter of the pipe respectively; Vis the velocity. Determine the head supplied by the pump and the power supplied to the flow. Also draw the Hydraulic Gradient Line (HGL) and Energy Gradient Line (EGL) for the system. Assume that the pipe is horizontal and is 510 ft in elevation. Given, viscosity of water at 50°F is 62.4 lbf/ft'.arrow_forward
- A liquid food (density = 1200 kg/m³, viscosity = 0.07 Pa s) is to be pumped from an open constant level reservoir (that has a fluid level of 2 m) to another open tank, with the discharge point of the pipe to the second reservoir being 7 m above the level of the fluid in the first constant level reservoir. The liquid is to be pumped via a steel pipeline system at the rate of 40 gallons per minute. The pipeline system consists of a 4-in. nominal diameter suction pipe that is 20 m long and has a fully open diaphragm valve in it while the discharge pipe is a 1-in. nominal diameter pipe that is 30 m long and has two 90 regular threaded elbows in it. Assuming a pump efficiency of 75%, what should be the rating of the pump to accomplish this task?arrow_forwardWater at 15 degrees Celsius is flowing through a 2-in ID smooth pipe. The friction loss for a 100-ft section of the pipe amounts to 4.8 lbf/lbm. Determine the velocity of the flow.arrow_forwardAn oil of specific gravity 0.77, is flowing through a venturimeter having inlet diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer shows a reading of 15 cm calculate the volumetric flow rate of oil through the horizontal venturimeter. Take Ca = 0.98.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license