a.
The frequency of the piston.
The frequency of the piston 8 cycles/sec.
Given:
Given, the wheel in a piston linkage like the one shown in the figure below has a radius of 6 in. It turns with an angular velocity of 16p rad/sec. The initial position is the same as shown in the figure:
Calculation:
The equation modelling the motion is of the form
The frequency of the motion is given by:
The frequency of the piston is 8 cycles/sec.
Conclusion:
The frequency of the piston 8 cycles/sec.
b.
The equation that models the motion of the piston.
The equation that models the motion of the piston is
Given:
Given, the wheel in a piston linkage like the one shown in the figure below has a radius of 6 in. It turns with an angular velocity of 16p rad/sec. The initial position is the same as shown in the figure:
Calculation:
In the given model,
Hence,
The equation of the motion of the piston is
Conclusion:
The equation that models the motion of the piston is
c.
The distance from the initial position 2.85 sec after starting.
The distance from the initial position 2.85 sec after starting is approximately 4.15 in.
Given:
Given, the wheel in a piston linkage like the one shown in the figure below has a radius of 6 in. It turns with an angular velocity of 16p rad/sec. The initial position is the same as shown in the figure:
Calculation:
The distance between the positions at
The initial position at
The position at
The distance between the positions is approximately
Conclusion:
The distance from the initial position 2.85 sec after starting is approximately 4.15 in.
Chapter 4 Solutions
PRECALCULUS:GRAPH...-NASTA ED.(FLORIDA)
- Use the method of washers to find the volume of the solid that is obtained when the region between the graphs f(x) = √√2 and g(x) = secx over the interval ≤x≤ is rotated about the x-axis.arrow_forward5 Use the method of disks to find the volume of the solid that is obtained when the region under the curve y = over the interval [4,17] is rotated about the x-axis.arrow_forward3. Use the method of washers to find the volume of the solid that is obtained when the region between the graphs f(x) = √√2 and g(x) = secx over the interval ≤x≤ is rotated about the x-axis.arrow_forward
- 4. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the x-axis. y = √√x, y = 0, y = √√3arrow_forward5 4 3 21 N -5-4-3-2 -1 -2 -3 -4 1 2 3 4 5 -5+ Write an equation for the function graphed above y =arrow_forward6 5 4 3 2 1 -5 -4-3-2-1 1 5 6 -1 23 -2 -3 -4 -5 The graph above is a transformation of the function f(x) = |x| Write an equation for the function graphed above g(x) =arrow_forward
- The graph of y x² is shown on the grid. Graph y = = (x+3)² – 1. +10+ 69 8 7 5 4 9 432 6. 7 8 9 10 1 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 -2 -3 -4 -5 -6- Clear All Draw:arrow_forwardSketch a graph of f(x) = 2(x − 2)² − 3 4 3 2 1 5 ས་ -5 -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 -5+ Clear All Draw:arrow_forward5. Find the arc length of the curve y = 3x³/2 from x = 0 to x = 4.arrow_forward
- -6 -5 * 10 8 6 4 2 -2 -1 -2 1 2 3 4 5 6 -6 -8 -10- The function graphed above is: Concave up on the interval(s) Concave down on the interval(s) There is an inflection point at:arrow_forward6 5 4 3 2 1 -6 -5 -3 -2 3 -1 -2 -3 -4 -5 The graph above is a transformation of the function x² Write an equation for the function graphed above g(x) =arrow_forward6 5 4 3 2 1 -1 -1 -2 -3 -4 A -5 -6- The graph above shows the function f(x). The graph below shows g(x). 6 5 4 3 2 1 3 -1 -2 -3 -4 -5 -6 | g(x) is a transformation of f(x) where g(x) = Af(Bx) where: A = B =arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning