College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 4.9QQ
For the woman being pulled forward on the toboggan in Figure 4.33, is the magnitude of the normal force exerted by the ground on the toboggan (a) equal to the total weight of the woman plus the toboggan, (b) greater than the total weight, (c) less than the total weight, or (d) possibly greater than or less than the total weight, depending on the size of the weight relative to the tension in the rope?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A mule is harnessed to a sled having a mass of 226 kg, including supplies. The mule must exert a force exceeding 1230 N at
an angle of 34.30 (above the horizontal) in order to get the sled moving. Treat the sled as a point particle.
HINT
(a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1230 N. (Enter the
magnitude.)
N
(b) Find the coefficient of static friction between the sled and the ground beneath it.
(c) Find the static friction force (in N) when the mule is exerting a force of 6.15 x 10² N on the sled at the same angle.
(Enter the magnitude.)
N
A mule is harnessed to a sled having a mass of 261 kg, including supplies. The mule must exert a force exceeding 1270 N at an angle of 38.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle.
(a)
Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1270 N. (Enter the magnitude.)
(b)
Find the coefficient of static friction between the sled and the ground beneath it.
(c)
Find the static friction force (in N) when the mule is exerting a force of 6.35 ✕ 102 N on the sled at the same angle. (Enter the magnitude.)
A donkey is harnessed to a sled having a mass of 251 kg, including supplies. The donkey must exert a force exceeding 1230 N at an angle of 34.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle.
(a)
Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1230 N. (Enter the magnitude.)
(b)
Find the coefficient of static friction between the sled and the ground beneath it.
(c)
Find the static friction force (in N) when the donkey is exerting a force of 6.15 ✕ 102 N on the sled at the same angle. (Enter the magnitude.)
Chapter 4 Solutions
College Physics:
Ch. 4.2 - Which of the following statements are true? (a) An...Ch. 4.2 - Which has greater value, a newton of gold on Earth...Ch. 4.2 - Respond to each statement, true or false: (a) No...Ch. 4.2 - A small sports car collides head-on with a massive...Ch. 4.4 - If you press a book flat against a vertical wall...Ch. 4.4 - A crate is sitting in the center of a flatbed...Ch. 4.4 - Suppose your friend is sitting on a sled and asks...Ch. 4.6 - Consider the two situations shown in Figure 4.30,...Ch. 4.6 - For the woman being pulled forward on the toboggan...Ch. 4 - A passenger sitting in the rear of a bus claims...
Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - A woman is standing on the Earth. In terms of...Ch. 4 - An exoplanet has twice the mass and half the...Ch. 4 - Choose the best answer. A car traveling at...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Calculate the magnitude of the normal force on a...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - A car of mass 875 kg is traveling 30.0 m/s when...Ch. 4 - A student of mass 60.0 kg, starting at rest,...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A rocket takes off from Earths surface,...Ch. 4 - A man exerts a horizontal force of 125 N on a...Ch. 4 - A horse is harnessed to a sled having a mass of...Ch. 4 - A block of mass 55.0 kg rests on a slope having an...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - Suppose the coefficient of static friction between...Ch. 4 - The coefficient of static friction between the...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1 = 16.0 kg is on a frictionless...Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A 72-kg man stands on a spring scale in an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Scientific Method.
Glencoe Physics: Principles and Problems, Student Edition
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal ...
Physics for Scientists and Engineers
an exact quantity that people agree to use to compare measurements.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bag of cement weighing 325 N hangs in equilibrium from three wires as suggested in Figure P4.23. Two of the wires make angles 1 = 60.0 and 2 = 40.0 with the horizontal. Assuming the system is in equilibrium, find the tensions T1, T2, and T3 in the wires. Figure P4.23 Problems 23 and 24.arrow_forwardIf the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forwardThe x and y coordinates of a 4.00-kg particle moving in the xy plane under the influence of a net force F are given by x = t4 6t and y = 4t2 + 1, with x and y in meters and t in seconds. What is the magnitude of the force F at t = 4.00 s?arrow_forward
- A mule is harnessed to a sled having a mass of 241 kg, including supplies. The mule must exert a force exceeding 1260 N at an angle of 36.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle. HINT (a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1260 N. (Enter the magnitude.) (b) Find the coefficient of static friction between the sled and the ground beneath it. (c) Find the static friction force (in N) when the mule is exerting a force of 6.30 x 104N on the sled at the same angle. (Enter the magnitude.) Narrow_forwardA horse is harnessed to a sled having a mass of 211 kg, including supplies. The horse must exert a force exceeding 1200 N at an angle of 38.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle. (a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1200 N. (Enter the magnitude.) N (b) Find the coefficient of static friction between the sled and the ground beneath it. (c) Find the static friction force (in N) when the horse is exerting a force of 6.00 ✕ 102 N on the sled at the same angle. (Enter the magnitude.)arrow_forwardA vertical force f is applied to a block of mass m that lies on a floor.What happens to the magnitude of the normal force f on the block from the floor as magnitude F is increased from zero if force f is (a) downward and (b) upward?arrow_forward
- A block is resting on an incline of slope 3:4. It is subjected to a force T=350 N on a slope of 5:12. Determine the x and y component of a force T and find the components of force T parallel and perpendicular to the incline.arrow_forwardA 100 N force, directed at an angle u above a horizontal floor, is applied to a 25.0 kg chair sitting on the floor. If u =0, what are (a) the horizontal component Fh of the applied force and (b) the magnitude FN of the normal force of the floor on the chair? If u =30.0, what are (c) Fh and (d) FN? If u =60.0, what are (e) Fh and (f) FN? Now assume that the coefficient of static friction between chair and floor is 0.420. Does the chair slide or remain at rest if u is (g) 0, (h) 30.0, and (i) 60.0?arrow_forwardA horse is harnessed to a sled having a mass of 211 kg, including supplies. The horse must exert a force exceeding 1180 N at an angle of 32.3⁰ (above the horizontal) in order to get the sled moving. Treat the sled as a point particle. (a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1180 N. (Enter the magnitude.) XN (b) Find the coefficient of static friction between the sled and the ground beneath it. (c) Find the static friction force (in N) when the horse is exerting a force of 5.90 x 102 N on the sled at the same angle. (Enter the magnitude.). Narrow_forward
- A horse is harnessed to a sled having a mass of 251 kg, including supplies. The horse must exert a force exceeding 1250 N at an angle of 36.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle. HINT (a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1250 N. (Enter the magnitude.) (b) Find the coefficient of static friction between the sled and the ground beneath it. (c) Find the static friction force (in N) when the horse exerting a force of 6.25 x 102 N on the sled at the same angle. (Enter the magnitude.) Need Help? Read It Watch itarrow_forwardA block is resting on an incline of slope 3:4. It is subjected to a force T=370 N on a slope of 5:12. Determine the x and y component of a force T and find the components of force T parallel and perpendicular to the incline.arrow_forwardA telephone pole has three cables pulling as shown from above, with F, = (400.0î + 300.0j) N, F, = -300.0î N, and F, = -700.0j N. 1 y F, (a) Find the net force (in N) on the telephone pole in component form. F. net (b) Find the magnitude (in N) and direction (in degrees counterclockwise from the +x-axis) of this net force. magnitude direction ° counterclockwise from the +x-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY