Concept explainers
Sales The cumulative sales S (in thousands of units) of a new product after it has been on the market for t years are modeled by
During the first year, 8000 units were sold.
(a) Solve for k in the model.
(b) What is the saturation point for this product? (The saturation point is the limit of S as
(c) How many units will be sold after 5 years?
(d) Use a graphing utility to graph the sales function.
Trending nowThis is a popular solution!
Chapter 4 Solutions
CALCULUS APPLIED APPROACH >PRINT UGRADE<
- Maria, a biologist is observing the growth pattern of a virus. She starts with 100 of the virus that grows at a rate of 10% per hour. She will check on the virus in 24 hours. How many viruses will she find?arrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardDrug Concentration When a drug is administered orally, it takes some time before the blood concentration reaches its maximum level. After that time, concentration levels decrease. When 500 milligrams of procainamide is administered orally, one model for a particular patient gives blood concentration C, in milligrams per liter, after t hours as C=2.65(e0.2te2t) What is the maximum blood-level concentration, and when does that level occur?arrow_forward
- Physiology Doctors treated a patient at an emergency room from 2:00P.M.to7:00P.M.. The patient’s blood oxygen level L (in percent form) during this time period can be modeled by L=0.270t2+3.59t+83.1,2t7 where t represents the time of day, with t=2 corresponding to 2:00P.M.. Use the model to estimate the time (rounded to the nearest hour) when the patient’s blood oxygen level was 93.arrow_forwardEastern Pacific Yellowfin Tuna Studies to fit a logistic model to the Eastern Pacific yellowfin tuna population have yielded N=1481+36e2.61t where t is measured in years and N is measured in thousands of tons of fish. a. What is the r value for the Eastern Pacific yellowfin tuna? b. What is the carrying capacity K for the Eastern Pacific yellowfin tuna? c. What is the optimum yield level? d. Use your calculator to graph N versus t. e. At what time was the population growing the most rapidly?arrow_forwardWaterWater flows into a tank, and a certain part of it drains out through a valve. The volume v in cubic feet of water in the tank at time t satisfies the equation dvdt=5(v/3). If the process continues for a long time, how much water will be in the tank?arrow_forward
- Population The table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardSales Growth In this exercise, we develop a model for the growth rate G, in thousands of dollars per year, in sales of the product as a function of the sales level s, in thousands of dollars. The model assumes that there is a limit to the total amount of sales that can be attained. In this situation, we use the term unattained sales for difference this limit and the current sales level. For example, if we expect sales grow to 3 thousand dollars in the long run, then 3-s is the unattained sales. The model states that the growth rate G is proportional to the product of the sales level s, and the unattained sales. Assume that the constant of proportionality is 0.3 and that the sales grow to 2 thousand dollars in the long run. a.Find the formula for unattained sales. b.Write an equation that shows the proportionality relation for G. c.On the basis of the equation from the part b, make a graph of G as a function of s. d.At what sales level is the growth rate as large as possible? e.What is the largest possible growth rate?arrow_forwardContinued This is a continuation of Exercise 13. As we saw earlier, the stock turnover rate of an item is the number of times that the average inventory of the item needs to be replaced as a result of sales in a given time period. Suppose that a hardware store sells 80 shovels each year. a. Suppose that the hardware store maintains an average inventory of 5 shovels. What is the annual stock turnover rate for the shovels? How is this related to the yearly number of orders to the wholesaler needed to restock inventory? b. What would he the annual stock turnover rate if the store maintained an average inventory of 20 shovels? c. Write a formula expressing the annual stock turnover rate as a function of the average inventory of shovels, identify the function and the variable, and state the units.arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning