Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 46, Problem 27P
To determine
The distance
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At time t=0s, there are No unstable pions. What fraction of pions decay after
travelling a distance of 25 m? Assume the pions travelling at 0.86c and their average
lifetime is 20.0 ns.
Select the correct answer choice:
(a)
85.9%
(b) 91.6%
(c) 99.2%
(d) 89.2%
The muon is a heavier relative of the electron; it is unstable, as we’ve seen. The tauon is an even heavier relative of the muon and the electron, with a half-life of only 2.9 x 10-13 s. A tauon is moving through a detector at 0.999c. If the tauon lives for one half-life, how far will it travel through the detector before decaying?
The average lifetime of a pi meson in its own frame of reference (i.e., the proper lifetime) is 2.6 x10-8 s.
If the meson moves with a speed of 0.93c, what is its mean lifetime (s) as measured by an observer on Earth?
What is the average distance (m) it travels before decaying, as measured by an observer on Earth?
What distance (m) would it travel if time dilation did not occur?
Chapter 46 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 46.2 - Prob. 46.1QQCh. 46.5 - Prob. 46.3QQCh. 46.5 - Prob. 46.4QQCh. 46.8 - Prob. 46.5QQCh. 46.8 - Prob. 46.6QQCh. 46 - Prob. 1OQCh. 46 - Prob. 2OQCh. 46 - Prob. 3OQCh. 46 - Prob. 4OQCh. 46 - Prob. 5OQ
Ch. 46 - Prob. 6OQCh. 46 - Prob. 7OQCh. 46 - Prob. 8OQCh. 46 - Prob. 1CQCh. 46 - Prob. 2CQCh. 46 - Prob. 3CQCh. 46 - Prob. 4CQCh. 46 - Prob. 5CQCh. 46 - Prob. 6CQCh. 46 - Prob. 7CQCh. 46 - Prob. 8CQCh. 46 - Prob. 9CQCh. 46 - Prob. 10CQCh. 46 - Prob. 11CQCh. 46 - Prob. 12CQCh. 46 - Prob. 13CQCh. 46 - Prob. 1PCh. 46 - Prob. 2PCh. 46 - Prob. 3PCh. 46 - Prob. 4PCh. 46 - Prob. 5PCh. 46 - Prob. 6PCh. 46 - Prob. 7PCh. 46 - Prob. 8PCh. 46 - Prob. 9PCh. 46 - Prob. 10PCh. 46 - Prob. 11PCh. 46 - Prob. 12PCh. 46 - Prob. 13PCh. 46 - Prob. 14PCh. 46 - Prob. 15PCh. 46 - Prob. 16PCh. 46 - Prob. 17PCh. 46 - Prob. 18PCh. 46 - Prob. 19PCh. 46 - Prob. 20PCh. 46 - Prob. 21PCh. 46 - Prob. 22PCh. 46 - Prob. 23PCh. 46 - Prob. 24PCh. 46 - Prob. 25PCh. 46 - Prob. 26PCh. 46 - Prob. 27PCh. 46 - Prob. 28PCh. 46 - Prob. 29PCh. 46 - Prob. 30PCh. 46 - Prob. 31PCh. 46 - Prob. 32PCh. 46 - Prob. 33PCh. 46 - Prob. 34PCh. 46 - Prob. 35PCh. 46 - Prob. 36PCh. 46 - Prob. 37PCh. 46 - Prob. 38PCh. 46 - Prob. 39PCh. 46 - Prob. 40PCh. 46 - Prob. 41PCh. 46 - Prob. 42PCh. 46 - Prob. 43PCh. 46 - Prob. 44PCh. 46 - The various spectral lines observed in the light...Ch. 46 - Prob. 47PCh. 46 - Prob. 48PCh. 46 - Prob. 49PCh. 46 - Prob. 50PCh. 46 - Prob. 51APCh. 46 - Prob. 52APCh. 46 - Prob. 53APCh. 46 - Prob. 54APCh. 46 - Prob. 55APCh. 46 - Prob. 56APCh. 46 - Prob. 57APCh. 46 - Prob. 58APCh. 46 - An unstable particle, initially at rest, decays...Ch. 46 - Prob. 60APCh. 46 - Prob. 61APCh. 46 - Prob. 62APCh. 46 - Prob. 63APCh. 46 - Prob. 64APCh. 46 - Prob. 65APCh. 46 - Prob. 66APCh. 46 - Prob. 67CPCh. 46 - Prob. 68CPCh. 46 - Prob. 69CPCh. 46 - Prob. 70CPCh. 46 - Prob. 71CPCh. 46 - Prob. 72CPCh. 46 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose a Wcreated in a particle detector lives for 5.001025s . What distance does it move in this time if it is traveling at 0.900c? (Note that the time is longer than the given Wlifetime, which can be due to the statistical nature of decay or time dilation.)arrow_forwardWhat is for a proton having amass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt)?arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forward
- (a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forward(a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forward
- The distance of a galaxy from our solar system is 10 Mpc. (a) What is the recessional velocity of the galaxy? (b) By what fraction is the starlight from this galaxy red shifted (that is, what is its z value)?arrow_forward(a) Calculate the relativistic quantity =11v2/c2for 1.00-TeV protons produced at Fermilab. (b) If such a proton created a +having the same speed, how long would its life be in the laboratory? (c) How far could it travel in this time?arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward
- Suppose a W created in a bubble chamber lives for What distance does it move in this time if it is traveling at 0.900 c? Since this distance is too short to make a track, the presence of the W must be inferred from its decay products. Note that the time is longer than the given W lifetime, which can be due to the statistical nature of decay or time dilation.arrow_forwardA spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the observer measure for the spacecraft as it goes by? (a) a sphere (b) a cigar shape, elongated along the direction of motion (c) a round pillow shape, flattened along the direction of motion (d) a conical shape, pointing in the direction of motionarrow_forwardIf relativistic effects are to be less than then must be less than 1.03. At what relative velocity isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY