Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781260048766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.5, Problem 84P
Consider a 1000-W iron whose base plate is made of 0.5-cm-thick aluminum alloy 2024-T6 (ρ = 2770 kg/m3 and cp = 875 J/kg·°C). The base plate has a surface area of 0.03 m2. Initially, the iron is in thermal equilibrium with the ambient air at 22°C. Assuming 90 percent of the heat generated in the resistance wires is transferred to the plate, determine the minimum time needed for the plate temperature to reach 200°C.
FIGURE P4–84
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An insulated container is partly filled with oil. The lid of the
container is removed, 0.107 kg of water heated to 97.0°C is
poured in, and the lid is replaced. As the water and the oil
reach equilibrium, the volume of the oil increases by 1.40x10-5
m³. The density of the oil is 941 kg/m³, its specific heat
capacity is 2250 J/(kg-C°), and its coefficient of volume
expansion is 683x10-6 (Cº)-¹. What is the temperature when
the oil and the water reach equilibrium?
Number
i
Units °℃
A beaker of water sits in the sun until it reaches an equilibrium temperature of30°C.
The beaker is made of 100 g of aluminum and contains 180 g of water.
In an attempt to cool this system, a small block of ice at 0°C is added to the water.
a beaker of water sits in the sun until it reaches an equilibrium temperature of 30°C.
The beaker is made of 100 g of aluminum and contains 360 g of water, which is TWICE as much water as was used in the original homework problem. In an attempt to cool this system, a small 100 g block of ice at 0°C is added to the water.
What is the final temperature of the system after the system reaches a new equilibrium?
a. Determine the exact mass of ice needed to melt (giving up its latent heat of fusion) and bring the water and beaker temperature down to 0°C.
b. If the ice block has a mass of 100 g, determine the final temperature of the system. If it turns out that Tf = 0°C, determine how much ice remains unmelted.
Consider a 1000-W iron whose base plate is made of 0.5-cm-thick aluminum alloy 2024-T6 (ρ = 2770 kg/m3 and cp = 875 J/kg·°C). The base plate has a surface area of 0.03 m2 . Initially, the iron is in thermal equilibrium with the ambient air at 22°C. Assuming 90 percent of the heat generated in the resistance wires is transferred to the plate, determine the minimum time needed for the plate temperature to reach 200°C.
Chapter 4 Solutions
Thermodynamics: An Engineering Approach
Ch. 4.5 - Is the boundary work associated with...Ch. 4.5 - On a P-V diagram, what does the area under the...Ch. 4.5 - An ideal gas at a given state expands to a fixed...Ch. 4.5 - Calculate the total work, in kJ, for process 13...Ch. 4.5 - Calculate the total work, in Btu, produced by the...Ch. 4.5 - Nitrogen at an initial state of 300 K, 150 kPa,...Ch. 4.5 - The volume of 1 kg of helium in a pistoncylinder...Ch. 4.5 - A pistoncylinder device with a set of stops...Ch. 4.5 - A mass of 5 kg of saturated water vapor at 150 kPa...Ch. 4.5 - A frictionless pistoncylinder device contains 16...
Ch. 4.5 - 1 m3 of saturated liquid water at 200C is expanded...Ch. 4.5 - Argon is compressed in a polytropic process with n...Ch. 4.5 - A gas is compressed from an initial volume of 0.42...Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - A frictionless pistoncylinder device contains 5 kg...Ch. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - Determine the boundary work done by a gas during...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - A closed system like that shown in Fig. P427E is...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - Complete each line of the following table on the...Ch. 4.5 - A substance is contained in a well-insulated rigid...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - A rigid 10-L vessel initially contains a mixture...Ch. 4.5 - A rigid 1-ft3 vessel contains R-134a originally at...Ch. 4.5 - A pistoncylinder device contains 5 kg of...Ch. 4.5 - A pistoncylinder device contains 0.5 lbm of water...Ch. 4.5 - 2 kg of saturated liquid water at 150C is heated...Ch. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - A pistoncylinder device initially contains 0.6 m3...Ch. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Two tanks (Tank A and Tank B) are separated by a...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - What is the change in the internal energy, in...Ch. 4.5 - Neon is compressed from 100 kPa and 20C to 500 kPa...Ch. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - A mass of 10 g of nitrogen is contained in the...Ch. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Determine the enthalpy change h of oxygen, in...Ch. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - Nitrogen in a rigid vessel is cooled by rejecting...Ch. 4.5 - Nitrogen at 100 psia and 300F in a rigid container...Ch. 4.5 - A pistoncylinder device containing carbon-dioxide...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - 1 kg of oxygen is heated from 20 to 120C....Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - A 4-m 5-m 6-m room is to be heated by a...Ch. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Argon is compressed in a polytropic process with n...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - A mass of 15 kg of air in a pistoncylinder device...Ch. 4.5 - Prob. 73PCh. 4.5 - A pistoncylinder device contains 2.2 kg of...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - A spring-loaded pistoncylinder device contains 5...Ch. 4.5 - Prob. 78PCh. 4.5 - Prob. 79PCh. 4.5 - A 1-kg block of iron is heated from 25 to 75C....Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - An ordinary egg can be approximated as a...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Long cylindrical steel rods ( = 7833 kg/m3 and cp...Ch. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 90PCh. 4.5 - Prob. 91PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 94PCh. 4.5 - Prob. 95PCh. 4.5 - Prob. 96PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107PCh. 4.5 - Prob. 108PCh. 4.5 - Prob. 109RPCh. 4.5 - Prob. 110RPCh. 4.5 - Prob. 111RPCh. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Prob. 115RPCh. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 119RPCh. 4.5 - A mass of 3 kg of saturated liquidvapor mixture of...Ch. 4.5 - A mass of 12 kg of saturated refrigerant-134a...Ch. 4.5 - Prob. 122RPCh. 4.5 - A pistoncylinder device contains helium gas...Ch. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Water is boiled at sea level in a coffeemaker...Ch. 4.5 - The energy content of a certain food is to be...Ch. 4.5 - Prob. 130RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - An insulated rigid tank initially contains 1.4 kg...Ch. 4.5 - In order to cool 1 ton of water at 20C in an...Ch. 4.5 - A 0.3-L glass of water at 20C is to be cooled with...Ch. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - Prob. 140RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Two 10-ft3 adiabatic tanks are connected by a...Ch. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144RPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - A 0.5-m3 rigid tank contains nitrogen gas at 600...Ch. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - Prob. 149FEPCh. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - Prob. 153FEPCh. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - Prob. 155FEPCh. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - Prob. 157FEPCh. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - Prob. 159FEPCh. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - A pistoncylinder device contains an ideal gas. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two insulated cylinders A and B with volumes VA = 1.2 m³ and VB = 6.4 m³ contain chlorine gas at different pressures and temperatures. The cylinders are insulated (no heat is lost to or gained from the outside) and connected by a valve. Initially, the valve is closed and the gas in the two cylinders has the following values: PA= 4.0 x 105 N/m2, TA= 250 K, PB = 2.5 x 105 N/m², Tg = 580 K. The valve is opened to allow the contents in the two cylinders to mix until the pressure equalizes. valve K TEACHER (a) Assuming there is no change in the temperatures of the containers themselves, determine the final temperature of the gas in the two cylinders. The atomic mass of chlorine gas is 35.4527 U. (b) Determine the final pressure. N/m²arrow_forwardAs shown in the figure below, a system consists of a copper tank whose mass is 12.5 kg, 4 kg of liquid water, and an electrical resistor of negligible mass. The system is insulated on its outer surface. Initially, the temperature of the copper is 27°C and the temperature of the water is 50°C. The electrical resistor transfers 200 kJ of energy to the system. Eventually the system comes to equilibrium. Determine final equilibrium temperature in °C.arrow_forwardA 30.14 g stainless steel ball bearing at 117.82°C is placed in a constant-pressure calorimeter containing 120 mL of water at 18.44°C. If the specific heat of the ball bearing is 0.474 J/g-°C, calculate the final temperature of the water. Assume the calorimeter to have negligible heat capacity. Specific heat of water is 4.184 J/g-°C .arrow_forward
- A gas at a pressure of 1.4MN/m2 and temperature of 360 degrees is expanded adiabatically to a pressure of 100KN/m2 the gas is then heated at constant volume until it again attains 360 degree Celsius when its pressure is found to be 220KN/m2 and finally it is compressed isothermally until the original pressure of 1.4MN/m2 is attained sketch the p-v diagram for these process and if the gas has a mass of 0.23kg, determine; The valve of the adiabatic index y The change in internal energy during the adiabatic expansion Taking Cp for the gas as 1.005KJ/kgkarrow_forward3) In a fixed volume container with a volume of 0.1 m^3, initially there is saturated water vapor at 130°C. The vessel is connected to a pipe through which steam flows through a valve at 2 MPa pressure and 350°C temperature. Then the valve opens and steam enters the container. Meanwhile, the temperature of the steam in the container remains constant at 130°C due to the heat transfer to the environment. When it is observed that 3/4 of the water in the container covers the liquid phase by mass, the valve is closed. Calculate a) the final pressure in the container, b) the mass of steam entering the container, c) the heat transfer to the environment.arrow_forwardThermodynamic problem. Determine the final temperature of 0.8kg of glass with heat capacity of C = 0.092 cal/g°k and initial temperature of 40°C when heat of 580KJ is extracted.arrow_forward
- An insulated evacuated tank of 1.75-m> volume is attached to a line containing steam at 400 Wa and 513.15 K (240°C). Steam flows into the tank until the pressure in the tank reaches 400 kPa. Assuming no heat flow from the steam to the tank, prepare graphs showing the mass of steam in the tank and its temperature as a function of pressure in the tankarrow_forwardA piece of steel of mass 0.9 kg has a temperature of 95°C. It is immersed in a copper calorimeter which contains 0.45 kg of water at a temperature of 20°C. The final temperature of the calorimeter system, after cooling correction had been taken into account, became 32°C. If the specific heat capacity of steel is 480 J/kgK and that of copper is 394 J/kgK, determine the water equivalent of the calorimeter system.arrow_forwardPropane (MW = 44 ; k = 1.13) initially at 30 psia and 215°F, is stored inside a large spherical vessel having a diameter of 10 ft. If the temperature is increased to 635°F. Determine the following: - Constant Volume Specific heat in BTU/lbm.R - Change in Internal Energy, AUU in BTUarrow_forward
- Plot DSa and DSw as functions of Tw on a single graph. Plot DSsys [DSsys = DSa +DSw] as functions of Tw on a second graph.arrow_forwardStainless steel ball bearings (p = 8085 kg/m³ and cp = 0.480 kJ/(kg °C)) having a diameter of 1.5 cm are to be quenched in water at a rate of 900 per minute. The balls leave the oven at a uniform temperature of 1000°C and are exposed to air at 25 °C for a while before they are dropped into the water. If the temperature of the balls drops to 900°C prior to quenching, determine the rate of heat transfer from the balls to the air.arrow_forwardAs shown in the figure below, a system consists of a copper tank whose mass is 23 kg, 4 kg of liquid water, and an electrical resistor of negligible mass. The system is insulated on its outer surface. Initially, the temperature of the copper is 27°C, and the water temperature is 50°C. The electrical resistor transfers 300 kJ of energy to the system. Eventually, the system comes to equilibrium. + Tf= Insulation 10000000 Resistor Determine the final equilibrium temperature, in °C. °C Copper tank initially at 27°C Liquid water, m = 4 kg, initially at 50°Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license