Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 45, Problem 28P
(a)
To determine
Calculate the amount of energy stored in the plasma of the TFTR reactor.
(b)
To determine
How many kilograms of water at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a nuclear power generating plant, heat from a reactor is used to generate steam for turbines. The rate of the fission reaction determines the amount of heat generated, and this rate is controlled by rods inserted into the radioactive core. The rods regulate the flow of neutrons. If the rods are lowered into the core, the rate of fission will diminish; if the rods are raised, the fission rate will increase. By automatically controlling the position of the rods, the amount of heat generated by the reactor can be regulated. Draw a functional block diagram for the nuclear reactor control system shown in the figure below. Show all blocks and signals.
Suppose enriched uranium containing 3.70% of the fissionable isotope 23592U is used as fuel for a ship. The water exerts an average friction force of magnitude 2.50 105 N on the ship. How far can the ship travel per kilogram of fuel? Assume that the energy released per fission event is 208 MeV and the ship's engine has an efficiency of 20.0%.
please answer should be in km
The nuclear reactions are used to produce heat, which will vaporize the moderator and thus
producing some steam. That steam is then used to make turning a dynamo, producing electricity
(a nuclear plant can thus be seen as a weird steam machine). The fission reaction produces an
energy of 202.8 MeV. The heat capacity of 1 mol of water is 75.385 J/K.
1) How many fission reactions are needed in order to increase the temperature of 1 mol of
water from 65 degrees Fahrenheit to 232 degrees Fahrenheit?
2) Deduce from the previous question that one nuclear reaction allows vaporizing several
water molecules.
3) What is the consequence of this effect for the total volume of the reactor? Is it mostly
filled with fuel or water?
Chapter 45 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 45.1 - When a nucleus undergoes fission, the two daughter...Ch. 45.2 - Prob. 45.2QQCh. 45.3 - Prob. 45.3QQCh. 45.4 - Prob. 45.4QQCh. 45 - Prob. 1OQCh. 45 - Prob. 2OQCh. 45 - Prob. 3OQCh. 45 - Prob. 4OQCh. 45 - Prob. 5OQCh. 45 - Prob. 6OQ
Ch. 45 - Prob. 7OQCh. 45 - Prob. 8OQCh. 45 - Prob. 9OQCh. 45 - Prob. 1CQCh. 45 - Prob. 2CQCh. 45 - Prob. 3CQCh. 45 - Prob. 4CQCh. 45 - Prob. 5CQCh. 45 - Prob. 6CQCh. 45 - Prob. 7CQCh. 45 - Prob. 8CQCh. 45 - Prob. 1PCh. 45 - Prob. 2PCh. 45 - Prob. 3PCh. 45 - Prob. 4PCh. 45 - Prob. 5PCh. 45 - Prob. 6PCh. 45 - Prob. 7PCh. 45 - Prob. 8PCh. 45 - Prob. 9PCh. 45 - Prob. 10PCh. 45 - Prob. 11PCh. 45 - Prob. 12PCh. 45 - Prob. 13PCh. 45 - Prob. 14PCh. 45 - Prob. 15PCh. 45 - Prob. 16PCh. 45 - Prob. 18PCh. 45 - Prob. 19PCh. 45 - Prob. 20PCh. 45 - Prob. 21PCh. 45 - Prob. 22PCh. 45 - Prob. 23PCh. 45 - Prob. 24PCh. 45 - Prob. 25PCh. 45 - Prob. 26PCh. 45 - Prob. 27PCh. 45 - Prob. 28PCh. 45 - Prob. 29PCh. 45 - Prob. 30PCh. 45 - Prob. 31PCh. 45 - Prob. 32PCh. 45 - Prob. 33PCh. 45 - Prob. 34PCh. 45 - Prob. 35PCh. 45 - Prob. 36PCh. 45 - Prob. 37PCh. 45 - Prob. 41PCh. 45 - Prob. 42PCh. 45 - Prob. 43PCh. 45 - Prob. 44PCh. 45 - Prob. 45PCh. 45 - Prob. 46APCh. 45 - Prob. 47APCh. 45 - Prob. 48APCh. 45 - Prob. 49APCh. 45 - Prob. 51APCh. 45 - Prob. 52APCh. 45 - Prob. 53APCh. 45 - Prob. 54APCh. 45 - Prob. 55APCh. 45 - Prob. 56APCh. 45 - Prob. 57APCh. 45 - Prob. 58APCh. 45 - Prob. 59APCh. 45 - Prob. 60APCh. 45 - Prob. 61APCh. 45 - Prob. 62APCh. 45 - Prob. 63APCh. 45 - Prob. 64APCh. 45 - Prob. 65APCh. 45 - Prob. 66APCh. 45 - Prob. 67APCh. 45 - Prob. 68APCh. 45 - Prob. 69APCh. 45 - Prob. 70APCh. 45 - Prob. 71APCh. 45 - Prob. 72APCh. 45 - Prob. 73AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The cure of a nuclear reactor generates a large amount of thermal energy from the decay of fission products, even when the power-producing fission chain reaction is turned off. Would this residual heat be greatest after the reactor has run for a long time or short time? What if the reactor has been shut down for months?arrow_forward(a) How many 239Pu nuclei must fission to produce a 20.0kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?arrow_forward(a) Calculate the energy released in the neutron- induced fission n+238U96Sr+140Xe+3n , given m(96Sr)=95.921750uand m(140Xe)=139.92164 . This result is about 6 MeV greater than the result for spontaneous fission. Why? Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward
- (a) Calculate the energy released in the neutroninduced fission reaction n+235U92Kr+142Ba+2n, given m(92Kr)=91.926269 and m(142Ba)=141.916361u. (b) Confirm that the total number at nucleons and total charge are conserved in this reaction.arrow_forwardAs explained in the previous section, if you want to have a nuclear reaction chain starting into your reactor, you need to enrich the uranium to have more uranium 235 available. It is assumed that you need to have about 4% of uranium 235 in order to maintain the reaction chain and to produce enough neutrons. Those neutrons are, however, too energetic to induce another fission reaction, it is needed first to reduce their energy. In most reactors, this is the role of the water located inside. 1) Explain how the energy is stored inside the neutrons 2) How can the water reduce this energy? 3) Is the water the only thing able to act as moderator? 4) What is the effect of the moderator on the cross-section of the atoms of uranium 235?arrow_forwardAnother series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6 x107 K. Because the temperature at the center of the Sun is only 1.5 x 107 K, the following cycle produces less than 10% of the Sun’s energy. (a) A high - energy proton is absorbed by 12C. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C . (d) Nucleus C absorbs a proton to produce nucleus D and a gamma ray. Identify nucleus D. (e) Nucleus D decays through positron emission to produce nucleus E. Identify nucleus E. (f ) Nucleus E absorbs a proton to produce nucleus F plus an alpha particle. What is nucleus F? Note: If nucleus F is not 12C— that is, the nucleus you started with —…arrow_forward
- a) Calculate the energy in joules released by the fusion of a 1.75 -kg mixture of deuterium and tritium, which produces helium. There are equal numbers of deuterium and tritium nuclei in the mixture. b) If this process takes place continuously over a period of a year, what is the average power output in units of megawatts?arrow_forwardAnother series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6 × 107 K. Because the temperature at the center of the Sun is only 1.5 × 107 K, the following cycle produces less than 10% of the Sun’s energy. (a) A high-energy proton is absorbed by 12 C. Another nucleus, A , is produced in the reaction, along with a gamma ray. Identify nucleus A decays through positron emission to form nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C absorbs a proton to produce nucleus D and a gamma ray. Identify nucleus D. (e) Nucleus D decays through positron emission to produce nucleus E. Identify nucleus E. (f) Nucleus E absorbs a proton to produce nucleus F plus an alpha particle. What is nucleus F ? Note: If nucleus F is not 12C—that is, the nucleus you started with—you have made an error and should review the sequence…arrow_forwardProblem 1. UA13 is used as a fuel in research nuclear reactor. Uranium-235 enrichment is 20%. Density of UAI3 is 6.8 g/cm. a) Calculate thermal neutron reproduction factor n for this fuel. b) What is the thermal power density in this fuel at a point where the thermal neutrons flux is 1.09x1013 n/cm²s? c) Determine power of the reactor if the mass of fuel is 75 kg and average flux is 1.0×101³ n/cm³s. Assume that average energy released per fission reaction is 200 MeV.arrow_forward
- Question 19. Pulse-combustion furnaces can be cost-effective in very cold climates or homes with high heating requirements as they allow the maximum amount of heat to be extracted from the burning fuel. Consider a 95%-efficient pulse-combustion natural- gas furnace that is used to heat a house. Using the HHV value of carbon intensity, calculate the carbon emissions per unit of heat delivered to the house in gC/MJ. Show calculations and the source of any additional number used.arrow_forwardThe electric power generated by a single average size nuclear reactor block is typically between 400 and 800 MW. The fission of one 235 U nucleus generates 185.0 MeV energy on average. Consider a 800.0 MW reactor for a one year period. The reactor is loaded with Uranium fuel containing 4.00 percent of 235U? Assume that the overall thermodynamic efficiency of converting heat to electric energy at this power plant is 40.0 percent. What is the total amount of electric energy generated by the reactor block in one year? Submit Answer Tries 0/12 What is the total amount of heat produced by the reactor block in one year? Submit Answer Tries 0/12 How many Uranium fissions produced this amount of heat? Submit Answer Tries 0/12 At least how much Uranium fuel needs to be loaded into the reactor for a one year long run?arrow_forwardThe fission process in a reactor is represented by the equation below: U235 + n1 = La148+ Br85 + 3n1. If the elements in the above equation have the following atomic mass units (a.m.u ): U235 =235.124, n1 =1.009 La148= 147.96 and Br85 = 84.938. Given that mass of 1 a.m.u =1.67 x 10 -27 kg and 1.619 x 10-19 J = eV. 235g of Uranium contains 6.03 x 1023 atoms. a.Calculate the mass of Uranium atom that will be converted into heat energy by the fission process. b. Calculate the total amount of energy in MeV released during the fission process c.Calculate the amount of energy in J that can be obtained from one kilogramme of Uranium during a fission processarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax