
Concept explainers
(a)
Find the closest distance between the center of the nuclei.
(a)

Answer to Problem 26P
The closest distance between the center of the nuclei is
Explanation of Solution
The deuterium-tritium fusion reaction,
Here, the tritium nucleus is at rest. The mass number of deuterium is
Write the formula for radius of the nuclei
Where,
Conclusion:
The closest distance between the center of the two nuclei is
Substitute equation (I) in the above equation and solve
Substitute
Thus, the closest distance between the center of the nuclei is
(b)
Find the electric potential energy at the closest distance between the center of the nuclei.
(b)

Answer to Problem 26P
The electric potential energy at the closest distance between the center of the nuclei is
Explanation of Solution
The closest distance between the center of the nuclei is
Write the formula for potential energy
Where,
Conclusion:
Substitute
Thus, the electric potential energy at the closest distance between the center of the nuclei is
(c)
The speed of the deuterium and tritium nuclei as they touch.
(c)

Answer to Problem 26P
The speed of the deuterium and tritium nuclei as they touch is
Explanation of Solution
The mass of deuterium is approximately
According to the law of conservation of momentum,
Substitute
Thus, the speed of the deuterium and tritium nuclei as they touch is
(d)
Find the minimum initial deuteron energy required to achieve fusion.
(d)

Answer to Problem 26P
The minimum initial deuteron energy required to achieve fusion is
Explanation of Solution
According to the law of conservation of energy,
Here,
The deuteron has been moving from the beginning (infinity), therefore the initial potential energy of deuteron is zero,
Write the formula for kinetic energy
Where,
Conclusion:
Substituting equation (V) in (IV),
Substitute (III) in the above equation,
Substitute
Thus, the minimum initial deuteron energy required to achieve fusion is
(e)
Why the fusion reaction occurs at much lower deuteron energies then the energy calculated in part (d).
(e)

Answer to Problem 26P
The fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Explanation of Solution
Classically, the particle with energy
Therefore, the fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Want to see more full solutions like this?
Chapter 45 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Close-up view etermine; The volume of the object given that the initial level of water in the measuring cylinder 23cm3. The density of the object. simple cell made by dipping copper and zinc plates into dilute sulfuric acid solution. A bull onnected across the plates using a wire. State what constitute current flow through the wire The bulb connected across is observed to light for some time and then goes out. State t possible asons for this observation. State two ways in which the processes named in question (b) above can be minimized t the bulb light for a longer period. ead is rated 80Ah. Determine the current that can be drawn continuouslyarrow_forwardAnswers with -1.828, -1.31 or 939.3 are not correct.arrow_forwardThree slits, each separated from its neighbor by d = 0.06 mm, are illuminated by a coherent light source of wavelength 550 nm. The slits are extremely narrow. A screen is located L = 2.5 m from the slits. The intensity on the centerline is 0.05 W. Consider a location on the screen x = 1.72 cm from the centerline. a) Draw the phasors, according to the phasor model for the addition of harmonic waves, appropriate for this location. b) From the phasor diagram, calculate the intensity of light at this location.arrow_forward
- A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the following, • Length of each tube is L = 0.4 m. • λ= 598 nm. Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198 times. (a) What is the index of refraction for air? (b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be determined by this experiment?arrow_forward1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qiarrow_forward(Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.arrow_forward
- (Figure 1)In each case let ww be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w. Find the direction of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in degrees.arrow_forwardA 70.0 cm, uniform, 40.0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Figure 1). A very small 20.0 N tool is placed on the shelf midway between the points where the wires are attached to it. Find the tension in the left-hand wire. Express your answer with the appropriate units.arrow_forwardFind the total bind Mev. binding energy for 13 Carbon, 6C (atomic mass = 13.0033554)arrow_forward
- What is the 27 energy absorbed in this endothermic Auclear reaction 2] Al + 'n → 27 Mg + ! H? (The atom mass of "Al is 26.981539u. and that of 11 Mg is 26.984341u) MeVarrow_forwardWhat is the energy released in this nuclear reaction 1 F + "', H-1 O+ He? 19 19 16 (The atomic mass of 1F is 18.998403 u, and that of 20 is 15.9949154) MeV.arrow_forwardWhat is the energy released in this B+ nuclear reaction خالد 2½ Al w/ Mg + ie? (The atomic mass of 11 Al is 23.9999394 and that > of 12 Mg is 23.985041 u) MeV.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





