To calculate: The solution of the exponential , rounded to four decimal places ,
Answer to Problem 19E
The four decimal places rounded value of exponential expression,
Explanation of Solution
Given information:The given expression is as,
Formula used:
For the exponential expression take log on both sides.
These are the steps to do this ,
Step 1 take “In” both side.
Step 2. Then to find the value of x one side take all the values of x and another side all the values of “In” and constants .
Step 3. Then with the help of “In” table put the value of “In” .
Step 4. Take the four decimal value of x from there .
Natural logarithms is “In”
Calculation :
Consider the expression,
Take natural logarithms both sides:
Apply the identity:
Apply the value of In200:
Rewrite the expression:
The above expression can’t be simplified further.
Thus the simplified form of the expression is,
Chapter 4 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning