Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 8Q
To determine
To rank:
the age of the universe from the three given straight line plots of v versus r, the greatest first.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This a question on Cosmology:
Suppose that you have a flat universe that has matter and dark energy with wd = -2/3 & Ωd,0 =0.7
At the time when light with z = 1 was emitted from a distant galaxy what was the ratio Ɛd /Ɛm ?
I asked the following question and was given the attached solution:
Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe?
Values:
m = 4 kg
r = 0.0407 m
Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)
I don't follow the work and I got the wrong answer, so please help and show your work as I do not follow along easily
thanks
Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe?
Values:
m = 10 kg
r = 0.0399 m
Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)
Chapter 44 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 44 - Prob. 1QCh. 44 - Prob. 2QCh. 44 - Prob. 3QCh. 44 - Prob. 4QCh. 44 - Prob. 5QCh. 44 - Prob. 6QCh. 44 - Prob. 7QCh. 44 - Prob. 8QCh. 44 - Prob. 9QCh. 44 - Prob. 10Q
Ch. 44 - Prob. 11QCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - a A stationary particle 1 decays into parties 2...Ch. 44 - Prob. 7PCh. 44 - GO A positive tau , rest energy = 1777 MeV is...Ch. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - Prob. 31PCh. 44 - Prob. 32PCh. 44 - Prob. 33PCh. 44 - Prob. 34PCh. 44 - Prob. 35PCh. 44 - What would the mass of the Sun have to be if Pluto...Ch. 44 - Prob. 37PCh. 44 - Use Wiens law see Problem 37 to answer the...Ch. 44 - Prob. 39PCh. 44 - Prob. 40PCh. 44 - Prob. 41PCh. 44 - Due to the presence everywhere of the cosmic...Ch. 44 - SSM Suppose that the radius of the Sun were...Ch. 44 - Prob. 44PCh. 44 - Prob. 45PCh. 44 - Prob. 46PCh. 44 - Prob. 47PCh. 44 - Prob. 48PCh. 44 - Prob. 49PCh. 44 - Prob. 50PCh. 44 - Prob. 51PCh. 44 - Prob. 52PCh. 44 - Prob. 53PCh. 44 - Prob. 54P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the Hubble constant were not 22 but 33 km/s per million light-years. Then what would the critical density be?arrow_forwardIs the Hubble constant actually constant?arrow_forward8 Three cosmologists have each plot- ted a line on the Hubble-like graph of Fig. 44-11. If we calculate the corre- sponding age of the universe from the three plots, rank the plots according to that age, greatest first. Figure 44-11 Question 8.arrow_forward
- According to the version of the Big Bang Theory without a Cosmological Constant (and without Dark Energy of any kind), what would be the maximum possible age of the universe in Gyr (Gigayears, meaning billions of years) if the Hubble Constant had the following values? Another way of asking the question would be: What is the Hubble Time in Gyr, given the following values of H0? H0 = 50 km/s/Mpc H0 = 75 km/s/Mpc H0 = 100 km/s/Mpc answer to two significant figures.arrow_forward(a) Calculate the approximate age of the universe from the average value of the Hubble constant, H0 = 20km/s ⋅ Mly . To do this, calculate the time it would take to travel 1 Mly at a constant expansion rate of 20 km/s. (b) If deceleration is taken into account, would the actual age of the universe be greater or less than that found here? Explain.arrow_forwardExplain what is meant by the term cosmological redshift, and contrast it with the Doppler shift that is observed when a luminous object recedes from an observer. From the defi- nition of redshift in terms of the observed and emitted wavelengths of photons, obtain an expression that relates redshift to the expansion factor of the Universe. Hence calculate the expansion factor of the Universe while a photon travels from a galaxy with redshift z = 1.arrow_forward
- What do the results from the Wilkinson Microwave Anisotropy Probe (WMAP) observations tell cosmologists?arrow_forward8arrow_forwardSuppose the energy density of the cosmological constant is equal to the present critical density En = Ec.0 = 4870MeVm-3. What is the total energy of the cosmological constant within a sphere 1AU in radius?What is the rest energy of the Sun (Eo = Moc²)? Comparing these two numbers, do you expect the cosmological constant to have a significant effect on the motion of planets within the solar system?arrow_forward
- The mass of the neutrino plays an important role in the universe. Suppose the mass of two neutrinos in the universe is 4.8×10-³5 kg and the current Hubble’s constant is 72 km/s/Mpc. The critical density of the universe is five times the average density of the universe. Estimate the number of neutrons present per cubic meter in the universe. (a) 2.1×10⁹ (b) 4.1×10² (c) 1.1x10° (d) 8.1×107arrow_forwardPlease answer within 90 minutes.arrow_forwardExplain why the cosmological principle requires that H0 must have the same value everywhere in space, but does not require that it be constant in time.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning