Fundamentals of Physics, Volume 1, Chapter 1-20
Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 37P
To determine

To:

(a) show that the energy E of a photon corresponding to the maximum wavelength given by Wien’s Law λmax =  (2898 μm·K)/T is

E = (4.28 x10-10 MeV/K) T.

(b) calculate the minimum temperature required for a photon to create an electron-positron pair.

Blurred answer
Students have asked these similar questions
Consider a black body of surface area 22.0 cm² and temperature 5700 K. (a) How much power does it radiate? 131675.5 W (b) At what wavelength does it radiate most intensely? 508.421 nm (c) Find the spectral power per wavelength at this wavelength. Remember that the Planck intensity is "intensity per unit wavelength", with units of W/m³, and "power per unit wavelength" is equal to that intensity times the surface area, with units of W/m 131.5775 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W/m
(a) Calculate the speed of an electron that is in the n = 1 orbit of a hydrogen atom, and give your answerv as a fraction of the speed of light in empty space c, for example, v = 0.5 if the answer werev = c/2 = 1.50 × 108 m/s. (It isn’t.)(b) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 3 orbit to the n = 2 orbit? This is the Hα line, and its light is scarlet, the color offresh human blood.(c) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 2 orbit to the n = 1 orbit?(d) How many nanometers would be the wavelength of a photon that would have the minimum amount ofenergy needed to ionize any hydrogen atom? (Hint: Electromagnetic radiation with this wavelength or shorteris called extreme ultraviolet radiation.(e) How many electron-volts (eV) would the electron in part (7)(d) need to have?
Just like the optical part of the spectrum, radio waves can be described in terms of photons - although they can be very difficult to detect. Consider the photons in radio waves from an FM station that has a 88.3-MHz broadcast frequency. Find the energy in joules of a photon in the radio waves.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning