Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 46P
To determine
To calculate:
the age of the universe from a hypothetical plot of recessional speed versus distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the average density of the Universe is small compared with the critical density, the expansion of the Universe described by Hubble's law proceeds with speeds that are nearly constant over time.
Calculate t since the big bang, assuming H = 22.0 km/s/Mly.
Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe?
Values:
m = 10 kg
r = 0.0399 m
Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)
The visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.
Chapter 44 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 44 - Prob. 1QCh. 44 - Prob. 2QCh. 44 - Prob. 3QCh. 44 - Prob. 4QCh. 44 - Prob. 5QCh. 44 - Prob. 6QCh. 44 - Prob. 7QCh. 44 - Prob. 8QCh. 44 - Prob. 9QCh. 44 - Prob. 10Q
Ch. 44 - Prob. 11QCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - a A stationary particle 1 decays into parties 2...Ch. 44 - Prob. 7PCh. 44 - GO A positive tau , rest energy = 1777 MeV is...Ch. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - Prob. 31PCh. 44 - Prob. 32PCh. 44 - Prob. 33PCh. 44 - Prob. 34PCh. 44 - Prob. 35PCh. 44 - What would the mass of the Sun have to be if Pluto...Ch. 44 - Prob. 37PCh. 44 - Use Wiens law see Problem 37 to answer the...Ch. 44 - Prob. 39PCh. 44 - Prob. 40PCh. 44 - Prob. 41PCh. 44 - Due to the presence everywhere of the cosmic...Ch. 44 - SSM Suppose that the radius of the Sun were...Ch. 44 - Prob. 44PCh. 44 - Prob. 45PCh. 44 - Prob. 46PCh. 44 - Prob. 47PCh. 44 - Prob. 48PCh. 44 - Prob. 49PCh. 44 - Prob. 50PCh. 44 - Prob. 51PCh. 44 - Prob. 52PCh. 44 - Prob. 53PCh. 44 - Prob. 54P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can beobserved individually and that have absolute brightnesses at a standard distance that are well known. Explain how the measuredbrightness would vary with distance as compared with the absolute brightness.arrow_forwardI asked the following question and was given the attached solution: Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 4 kg r = 0.0407 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3) I don't follow the work and I got the wrong answer, so please help and show your work as I do not follow along easily thanksarrow_forwardThe critical density of a universe is around 5×10-27 kg/m³. Estimate the Hubble constant for this universe.arrow_forward
- Distances to very remote galaxies are estimated based on their apparent type, which indicate the number of stars in thegalaxy, and their measured brightness. Explain how the measured brightness would vary with distance. Would there be anycorrection necessary to compensate for the red shift of the galaxy (all distant galaxies have significant red shifts)? Discusspossible causes of uncertainties in these measurementsarrow_forwardTo get an idea of how empty deep space is on the average, perform the following calculations: (a) Find the volume our Sun would occupy if it had an average density equal to the critical density of 10-26 kg / m3 thought necessary to halt the expansion of the universe. (b) Find the radius of a sphere of this volume in light years. (c) What would this radius be if the density were that of luminous matter, which is approximately 5% that of the critical density? (d) Compare the radius found in part (c) with the 4-ly average separation of stars in the arms of the Milky Way.arrow_forwardA 0.75 m radio signal is detected from a galaxy as 2.0 m. Estimate the relative velocity.arrow_forward
- Critical density of a universe is found to be 6×10-27 kg/m. Estimate the value of Hubble constant.arrow_forwardfor 14 i observed the galaxy end aroung 5 kpc. I need help with 18arrow_forward46 Figure 44-12 is a hypothetical plot of the recessional speeds v of galaxies against their distance r from us; the best-fit straight line through the data points is shown. From this plot determine the age of the universe, assuming that Hubble's law holds and that Hubble's con- stant has always had the same value. 0.40c 5.3 Figure 44-12 Problem 46. Distance r (10° ly) Speed varrow_forward
- The matter density in the Universe today is ?m=2.7×10−27kgm−3. What would be the value of the density parameter, Ω0, if the Hubble constant had the value H0 = 38 km/s/Mpc?arrow_forward(a) Calculate the approximate age of the universe from the average value of the Hubble constant, H0 = 20km/s ⋅ Mly . To do this, calculate the time itwould take to travel 1 Mly at a constant expansion rate of 20 km/s.(b) If deceleration is taken into account, would the actual age of the universe be greater or less than that found here? Explain.arrow_forwardIf p = 2.7 x 10-27 kgm-3, what is the radius of curvature R, of Einstein's static universe? How long would it take a photon to circumnavigate such a universe?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning