Concept explainers
Gliding mammals Many species of small mammals (such as flying squirrels and marsupial gliders) have the ability to walk and glide. Recent research suggests that these animals choose the most energy-efficient means of travel. According to one empirical model, the energy required for a glider with body mass m to walk a horizontal distance D is 8.46 Dm2/3 (where m is measured in grams, D is measured in meters, and energy is measured in microliters of oxygen consumed in respiration). The energy cost of climbing to a height D tan θ and gliding a distance D at an angle θ below the horizontal is modeled by 1.36 m D tan θ (where θ = 0 represents horizontal flight and θ > 45° represents controlled falling). Therefore, the function
gives the energy difference per horizontal meter traveled between walking and gliding: If S > 0 for given values of m and θ, then it is more costly to walk than glide.
- a. For what glide angles is it more efficient for a 200-gram animal to glide rather that walk?
- b. Find the threshold function θ = g(m) that gives the curve along which walking and gliding are equally efficient. Is it an increasing or decreasing function of body mass?
- c. To make gliding more efficient than walking, do larger gliders have a larger or smaller selection of glide angles than smaller gliders?
- d. Let θ = 25°, (a typical glide angle). Graph S as a function of m, for 0 ≤ m ≤ 3000. For what values of m is gliding more efficient?
- e. For θ = 25°, what value of m (call it m*) maximizes S?
- f. Does m*, as defined in part (e), increase or decrease with increasing θ? That is, as a glider reduces its glide angle, does its optimal size become larger or smaller?
- g. Assuming Dumbo is a gliding elephant whose weight is 1 metric ton (106 g), what glide angle would Dumbo use to be more efficient at gliding than walking?
(Source: Energetic savings and the body size distribution of gliding mammals, R. Dial, Evolutionary Ecology Research 5, 2003)
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Calculus: Early Transcendentals, 2nd Edition
Additional Math Textbook Solutions
Introductory Statistics
Thinking Mathematically (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
A First Course in Probability (10th Edition)
Elementary Statistics (13th Edition)
Basic Business Statistics, Student Value Edition
- 21/solve the following differential equation Using laplace transform y₁ =-y, Y₁(0)=1 y' = Y Y₂(0)=0 2 21 Solve the following equations: dy 1- dt + 2y + = ydt 2 cost, y(0) = 1 2 2- y(t) = ±² + (yet) sin (t-u) du Q3: Answer the following: 1- L [Log Sa] (5²+9²) 2- L1 [Log (Cos²y1] 0-25 3-L-1 [ -] 4- (5+1) 3 L (ezt sin3t) e-s 5- L-1 ( 너 (0) 5² +5arrow_forwardLESSON MATHEMATICS ACTIVITIES 1.3 DECIMALS 1. Josh used itres of ster during an Integrahed Express the ami remained DATE b) 14.07 2. Express 0.5 as a fraction in its simplest form or e) 327.034 7. Write the number form is e) 5.11x 10 ese standard 3. Express 0.145 os simplest form fraction in its b) 2.03x102 4. In August 2022, the cost of a litre of petrol was Sh 159.25. How much did kipchoge pay for two litres? c) 6.3x103 5. A doctor prescribed 12.5 ml of a dr to a patient. Express the drug prescribed in litres to two significant figures 8. Work out: a) 2.05 5.2-1.8 rite each of the following in stand- ds form 0039 b)3.6 2.8 (2.8+0arrow_forwardRK 119 43 Previous Problem University at Buffalo Problem List Next Problem Match the surfaces (a) - (f) below with the contour diagrams (1) - (6) below those. (a) Surface (a) matches contour 5 V V (b) Surface (b) matches contour 2 V (c) Surface (c) matches contour 1 (d) Surface (d) matches contour 6 V (e) Surface (e) matches contour 4 V (f) Surface (f) matches contour 3 V (4) (1) -0.25 (a) (b) (c) (d) (e) y y 2.5 0.5 1.5 1.5 1.5 y .3 0.25 OC 0.25 -0.25 (2) X 1.5 ZI (f) y 0.01 0.01 (3) ☑ X 0.01 0.01 0.2 0.2 (5) 0 x 0.5 (6) 0.25 X X 0.25 0.5arrow_forward
- 43 University at Buffalo Previous Problem Problem List Next Problem At least one of the answers above is NOT correct. The figure shows a hill with two paths, A and B. (a) What is the elevation change along each path? 400 9400 ✓ feet (b) Which path ascends more rapidly? A v (c) On which path will you probably have a better view of the surrounding countryside (assuming that trees do not block your view)? A V (d) Along which path is there more likely to be a stream? A V Note: You can earn 50% partial credit for 2-3 correct answers. Preview My Answers Submit Answers Q hulu )))) 9800' A 10000 (Click on graph to enlarge) L ^ B 0 Logged in as Luella Ya 4)arrow_forwardfind the general soultion (D-DxDy-2Dx)Z = sin(3x+4y) + x²yarrow_forwarddx Y+2 h dy x + Z " dz X+Z find three Soultion indeparedarrow_forward
- dy Find for y = xetanh 3x + cosh 1 x²+10 dx Find S 1−sinh 2 x cosh x 2 dxarrow_forwarda) Sketch the y = cosh x, and indicate its properties. b) prove that sinh 2x = 2 sinh x coshx dx برهن for y=xetanh 3x + cosh¹ x² + 10 dy Find cosh x Find S dx 1-sinh 2 xarrow_forwardQ2. Find the points on the ellipse x²+4y² = 1, where f(x, y) = xy has its extreme value. Q3. Find the moment of inertia about x-axis for the area bounded by the curves x = y² and x=2y-y2 if 8 = y + 1.(20 Mark) Q4 Find the iterated integral for the following then evaluate it: (20 Mark) -1/√2 y2 dxdy -1/√2 1-y2arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning