
Electric Circuits. (11th Edition)
11th Edition
ISBN: 9780134746968
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.4, Problem 4AP
To determine
Calculate the voltage
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please write all the
Formulas clearly for each case first,
then solve the question by hand on
paper and send a clear photo of the
solution. Thanks a lot
Power Electronics
Q1) For the circuit shown in Fig (1).
(a) Draw the output voltage and load current waveforms if the load is inductive. Explain the
working of each device.
(b) If Vs 220V, load resistance is 10 2 and output voltage frequency is 50Hz.
1. What is the rms value of the load voltage?
2. Obtain Fourier series expression of the output voltage up to 7th order harmonic.
3. Draw the frequency spectrum of the output voltage wave up to 7th order harmonic.
T₁
D₁
D
Vo
T₁
D4
Fig 1
Load
T₂
D
Please write all the formulas clearly for
each case first, then solve the question
by hand on paper and send a clear
photo of the solution. Thanks a lot
6 A three-phase transistor voltage-source inverter supplies a three-phase load,
as shown in Fig.8.41. The load consists of star connected resistance of
10 in each phase. The inverter supply voltage is 200V d.c. and each
inverter switch conducts for 120°.
(a) Sketch the switching signals for the six transistors.
(b) Sketch the line-to-neutral voltage for one complete cycle of the
output voltage.
(c) Sketch the line-to-line voltage for one complete cycle of the
output voltage.
(d) Calculate the rms values of the first five harmonics in the line-
to-line output voltage, including the fundamental.
(e) Calculate the rms values of the first five harmonics in the line-
to-neutral output voltage, including the fundamental.
[Ans: (d) VL-L=244.95 V, (e) Vph = 141.42 V]
Q1
Q3
Q5
Vdc
200V
b
Q4
Q6
Q2
Fig.8.41.
120°
conuction
ww
102
w
1052
ww
n
1052
Please write all the
Formulas clearly for each case first,
then solve the question by hand on
paper and send a clear photo of the
solution. Thanks a lot
Tent waveforms if the
Q4) A three-phase inverter supplies a 3-phase load, as shown in Fig (2). The load consists of star
connected resistance of 1002 in each phase. The inverter supply voltage is 200 V dc, and each
inverter switch conducts 180°.
(a) Sketch the switching signals for the six transistors.
(b) Sketch the line-line voltage for one complete cycle of the output voltage
(c) Sketch the line-line voltage for one complete cycle of the output voltage
(d) Calculate the rms values of the first five harmonics in the line-line output voltage,
including the fundamental.
(e) Calculate the rms values of the first five harmonics in the line-neutral output voltage.
including the fundamental.)
Vac
200V
Q1
Q3
Q5
B
Q6
b
Q2
ww
10Ω
Fig2
3
1092
ww
1092
Chapter 4 Solutions
Electric Circuits. (11th Edition)
Ch. 4.2 - a) For the circuit shown, use the node-voltage...Ch. 4.2 - Use the node-voltage method to find v in the...Ch. 4.3 - Use the node-voltage method to find the power...Ch. 4.4 - Use the node-voltage method to find vo in the...Ch. 4.4 - Use the node-voltage method to find v in the...Ch. 4.4 - Use the node-voltage method to find v1 in the...Ch. 4.5 - Use the mesh-current method to find (a) the power...Ch. 4.6 - Determine the number of mesh-current equations...Ch. 4.6 - Use the mesh-current method to find vo in the...Ch. 4.7 - Use the mesh-current method to find the power...
Ch. 4.7 - Use the mesh-current method to find the mesh...Ch. 4.7 - Use the mesh-current method to find the power...Ch. 4.8 - Find the power delivered by the 2 A current source...Ch. 4.8 - Find the power delivered by the 4 A current source...Ch. 4.9 - Use a series of source transformations to find the...Ch. 4.10 - Find the Thévenin equivalent circuit with respect...Ch. 4.10 - Find the Norton equivalent circuit with respect to...Ch. 4.10 - A voltmeter with an internal resistance of 100 kΩ...Ch. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.11 - Find the Thévenin equivalent circuit with respect...Ch. 4.12 - Find the value of R that enables the circuit shown...Ch. 4.12 - Assume that the circuit in Assessment Problem 4.21...Ch. 4 - For the circuit shown in Fig. P4.1, state the...Ch. 4 - If only the essential nodes and branches are...Ch. 4 - Assume the voltage vs in the circuit in Fig. P4.3...Ch. 4 - A current leaving a node is defined as...Ch. 4 - Look at the circuit in Fig. 4.4.
Write the KCL...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Find the power developed by the 40 mA current...Ch. 4 - A 100 Ω resistor is connected in series with the...Ch. 4 - Use the node-voltage method to find how much power...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find v1 and v2 in...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find v1, v2, and v3...Ch. 4 - The circuit shown in Fig. P4.14 is a dc model of a...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node-voltage method to show that the...Ch. 4 - Use the node-voltage method to calculate the power...Ch. 4 - Use the node voltage method to find vo for the...Ch. 4 - Use the node-voltage method to find the total...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Find the node voltages v1, v2, and v3 in the...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Use the node-voltage method to find the branch...Ch. 4 - Use the node-voltage method to find the value of...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Use the node-voltage method to find io in the...Ch. 4 - Use the node-voltage method to find υ0 and the...Ch. 4 - Use the node-voltage method to find vo in the...Ch. 4 - Use the node-voltage method to find the power...Ch. 4 - Assume you are a project engineer and one of your...Ch. 4 - Show that when Eqs. 4.13, 4.14, and 4.16 are...Ch. 4 - Solve Problem 4.12 using the mesh-current...Ch. 4 - Solve Problem 4.14 using the mesh-current...Ch. 4 - Solve Problem 4.25 using the mesh-current...Ch. 4 - Solve Problem 4.26 using the mesh-current...Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Solve Problem 4.17 using the mesh-current...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find the power...Ch. 4 - Use the mesh-current method to find vo in the...Ch. 4 - Solve Problem 4.10 using the mesh-current...Ch. 4 - Solve Problem 4.21 using the mesh-current...Ch. 4 - Use the mesh-current method to find how much power...Ch. 4 -
Use the mesh-current method to solve for iΔ in...Ch. 4 - Use the mesh-current method to determine which...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Solve Problem 4.23 using the mesh-current...Ch. 4 - Use the mesh-current method to find the total...Ch. 4 - Assume the 20 V source in the circuit in Fig....Ch. 4 - Use the mesh-current method to find the branch...Ch. 4 - Find the branch currents ia − ie for the circuit...Ch. 4 - The variable de voltage source in the circuit in...Ch. 4 - The variable de current source in the circuit in...Ch. 4 - Assume you have been asked to find the power...Ch. 4 - A 4 kΩ resistor is placed in parallel with the 10...Ch. 4 - Would you use the node-voltage or mesh- current...Ch. 4 - Use source transformations to find the current io...Ch. 4 - Find the current io in the circuit in Fig. P4.60...Ch. 4 - Make a series of source transformations to find...Ch. 4 - Use a series of source transformations to find i0...Ch. 4 - Use source transformations to find vo in the...Ch. 4 - Prob. 64PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - A Thévenin equivalent can also be determined from...Ch. 4 - Prob. 72PCh. 4 - The Wheatstone bridge in the circuit shown in Fig....Ch. 4 - Prob. 74PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Find the Thévenin equivalent with respect to the...Ch. 4 - Prob. 80PCh. 4 - Find the Norton equivalent with respect to the...Ch. 4 - The variable resistor in the circuit in Fig. P4.82...Ch. 4 - Prob. 83PCh. 4 - a) Calculate the power delivered for each value of...Ch. 4 - Find the value of the variable resistor Ro in the...Ch. 4 - A variable resistor R0 is connected across the...Ch. 4 - The variable resistor (R0) in the circuit in Fig....Ch. 4 - The variable resistor (Ro) in the circuit in Fig....Ch. 4 - The variable resistor (RL) in the circuit in Fig....Ch. 4 - Prob. 90PCh. 4 - The variable resistor in the circuit in Fig. P4.91...Ch. 4 - Use the principle of superposition to find the...Ch. 4 - Prob. 93PCh. 4 - Use the principle of superposition to find the...Ch. 4 - a) In the circuit in Fig. P4.95, before the 10 mA...Ch. 4 - Use the principle of superposition to find the...Ch. 4 - Use the principle of superposition to find the...Ch. 4 - Use the principle of superposition to find vo in...Ch. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Assume your supervisor has asked you to determine...Ch. 4 - Prob. 102PCh. 4 - Laboratory measurements or a dc voltage source...Ch. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Repeat Problem 4.105 if Ig2 increases to 17 A and...Ch. 4 - Prob. 107PCh. 4 - Use the results given in Table 4.2 to predict the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please write all the formulas clearly for each case first, then solve the question by hand on paper and send a clear photo of the solution. Thanks a lot A three-phase bridge-inverter is fed from a d.c. source of 200 V. If the load is star-connected of 10 02/phase pure resistance, determine the RMS load current, the required RMS current rating of the thyristors and the load power for (i) 120° firing, and (ii) 180° firing. [Ans (i) 120° firing IL (rms) = 8.16 A, IT(rms) = 9.8 A. Load power = 2000 W. (ii) 180° firing IL (rms) = 9.43 A, IT (rms) = 6.67 A. Load power = 2667 W.]arrow_forwardSIM1 RESET O SIMULINO ARDUINO AREF 13 12 -11 www.arduino.cc blogembarcado.blogspot.com SIMULINO UNO BUZ1 BUZZER R1 R2 51.1 68.1 GAS1 MQ-2 GAS SENSOR MQ-2 TestPin www.TheEng Vcc OUT GND Can the expt help me write Arduino code for the Project sensou pas?arrow_forwardSolve this problem and show all of the workarrow_forward
- A 3 km long multimode step index fibre operating at a bandwidth of 4 Mhz has a core refractive index of 1.48 and a refractive index difference of 1 %. Evaluate the rms pulse broadening per kilometer which results from chromatic dispersion.arrow_forwardFind the Thevenin Equivalent of the circuit below, show all steps;arrow_forwardFind the Thevenin Equivalent Circuit of the following and find the current through R_L, show all steps;arrow_forward
- Find the Thevenin Equivalent Circuit of the circuit below and the current through R_L , show all steps;arrow_forwardFind the Norton Equivalent of the below and the voltage across R_L, show all steps;arrow_forwardUse Mesh Analysis to find the current through the laod resistor R_L. Show all steps;arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Nodal Analysis for Circuits Explained; Author: Engineer4Free;https://www.youtube.com/watch?v=f-sbANgw4fo;License: Standard Youtube License