Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 3P
To determine
The parallax angle for a star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You measure a star to have a parallax angle of 0.12 arc-seconds
What is the distance to this star in parsecs?
8.33
Hint: d = 1/p
What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]
6. |A visual binary has a parallax 00 = 0.4 arcsec, a maximum separation a00
= 6.0 arcsec, and an orbital period P = 80 yr. What is the total mass of the
binary system? Assume a circular orbit. [Hint:
You need Kepler's Third Law of Planetary motion.]
Time left 1:45:56
A star has initially a radius of 680000000 m and a period of rotation about its axis of 33 days.
Eventually it changes into a neutron star with a radius of only 45000 m and a period of 0.3 s.
Assuming that the mass has not changed, find
Assume a star has the shape of a sphere.
(Suggestion: do it with formula first, then put the numbers in)
[Recommended time : 5-8 minutes]
(a) the ratio of initial to final angular momentum (Li/Lf)
Oa. 2.17E+15
Ob. 24
Oc. 0.0416
Od. 4.61E-16
(b) the ratio of initial to final kinetic energy
Oa. 4.85E-23
Ob. 396000
Oc. 2.53E-6
Od. 2.06E+22
Chapter 44 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 44.1 - Suppose we could place a huge mirror 1 light-year...Ch. 44.2 - Prob. 1BECh. 44.4 - What is the Schwarzschild radius for an object...Ch. 44.4 - A black hole has radius R. Its mass is...Ch. 44.9 - Prob. 1EECh. 44 - The Milky Way was once thought to be murky or...Ch. 44 - Prob. 2QCh. 44 - Prob. 3QCh. 44 - Prob. 4QCh. 44 - Prob. 5Q
Ch. 44 - Prob. 6QCh. 44 - Prob. 7QCh. 44 - Prob. 8QCh. 44 - Prob. 9QCh. 44 - Prob. 10QCh. 44 - Prob. 11QCh. 44 - Prob. 12QCh. 44 - Prob. 13QCh. 44 - Compare an explosion on Earth to the Big Bang....Ch. 44 - If nothing, not even light, escapes from a black...Ch. 44 - Prob. 16QCh. 44 - Prob. 17QCh. 44 - Explain what the 2.7-K cosmic microwave background...Ch. 44 - Prob. 19QCh. 44 - Prob. 20QCh. 44 - Prob. 21QCh. 44 - Under what circumstances would the universe...Ch. 44 - Prob. 23QCh. 44 - Prob. 24QCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5PCh. 44 - Prob. 6PCh. 44 - (II) What is the relative brightness of the Sun as...Ch. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 19PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 28PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - Prob. 31PCh. 44 - (II) Calculate the peak wavelength of the CMB at...Ch. 44 - Prob. 33PCh. 44 - (II) The scale factor or the universe (average...Ch. 44 - Prob. 35PCh. 44 - Prob. 36PCh. 44 - Prob. 37GPCh. 44 - Prob. 38GPCh. 44 - Prob. 39GPCh. 44 - Prob. 40GPCh. 44 - Prob. 41GPCh. 44 - Prob. 42GPCh. 44 - Prob. 43GPCh. 44 - Prob. 44GPCh. 44 - Prob. 45GPCh. 44 - Prob. 46GPCh. 44 - Prob. 47GPCh. 44 - Prob. 48GPCh. 44 - Prob. 49GPCh. 44 - Prob. 50GPCh. 44 - Calculate the Schwarzschild radius using a...Ch. 44 - How large would the Sun be if its density equaled...Ch. 44 - Prob. 53GPCh. 44 - (a) Use special relativity and Newtons law of...Ch. 44 - Prob. 55GPCh. 44 - Prob. 56GPCh. 44 - Prob. 57GPCh. 44 - Prob. 58GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need the answer as soon as possiblearrow_forwardCalculate by how many times Betelgeuse is brighter than the Sun, if its parallax is 0.006 arcsec, and its apparent magnitude is m = +.5. Can you first use the parallax to calculate the distance and then use the magnitude-distance formula to find the absolute magnitude of Betelgeuse and finally, compare it to the absolute magnitude of the Sun which is -26,74 because other experts used other methods and the answer was not correct.arrow_forward= 2000 K and a radius of R, A young recently formed planet has a surface temperature T Jupiter radii (where Jupiter's radius is 7 x 107 m). Calculate the luminosity of the planet and 2 determine the ratio of the planet's luminosity to that of the Sun.arrow_forward
- Double stars are stars which are close enough and move slowly enough that they orbit each other. Each star is located at the focus of the ellipse of its orbit around the other star. Consider a binary star system which has an average angular separation of 6.1" arc and a period of 87.3 years. The annual parallax of the stars, p, is 0.192"arc. We call the measure of the angular separation of the two stars, . [remember that 1 degree is divided into 60 'arc (read this as 60 minutes of arc) and each 1'arc is subdivided into 60"arc (read this as 60 seconds of arc)]. The distance to the binarystar system is calculated from its parallax , p, of 0.192"arc, which has been measured carefully over a period of the last 92 years. First we must calculate the distance to the binary system: D = 1/p where p is the parallax in seconds of arc giving D in parsecs. The distance, D = 1/p = ________ pc How many light years does this correspond to? (remember that 1 pc = 3.26 lt yr) D (in light…arrow_forward1.) How far, in parsecs, is an object that has a parallax of 1 arc second? How far is it, in light years? 2.) How far in parsecs, is an object that has a parallax of 0.1 arc-seconds? How far is it, in light years?arrow_forwardThe nearest star to our solar system is 4.29 light years away. How much is thisdistance in terms of parsecs? How much parallax would this star (named Alpha Centauri) show when viewed from two locations of the Earth six months apart in its orbit around the Sun ?arrow_forward
- (c) In the case of a binary-star system, with stars of mass my and m2 separated by a distance r, the period, T, of the system is given by T²= (d) D 472 Show from first principles that di, the orbital radius of the star of mass mi, is given by G (m₁+ m₂) +3 d₁=m₂ GT² 4π² (m₁ + m₂) ² ³arrow_forwardWhat is the disadvantage of the parallax method, especially for studying distant parts of the Galaxy?arrow_forwardThe nearest neutron star (a collated star made primarily of neutrons) is about 3.00 1018 m away from Earth. Given that the Milky Way galaxy (Fig. P1.81) is roughly a disk of diameter 1021 m and thickness 1019 m, estimate the number of neutron stars in the Milky Way to the nearest order of magnitude. Figure P1.81arrow_forward
- What would the parallax of Luhman 16 (see Exercise 19.38) be as measured from Earth?arrow_forwardWhat is the value of Tan thetaarrow_forwarda) Calculate the period of the solar system's orbit around the Milky Way. Assume that we are 8.5 kpc from the galactic center and assume that the mass of the Milky Way interior to our orbit is ~ 10¹¹ solar masses. Alpha Centauri is a multiple star system only 1.34 parsecs away. The apparent magnitudes of the two main stars are: a Cen A: my = +0.01; a Cen B: my = +1.33. b) Calculate the ratio of the flux we receive in the V filter from a Cen A to the flux we receive from a Cen B. c) Calculate the absolute magnitude My of a Cen B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning