
Applied Statistics and Probability for Engineers
6th Edition
ISBN: 9781118539712
Author: Douglas C. Montgomery
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.4, Problem 35E
To determine
Find the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a. Find the value of A.b. Find pX(x) and py(y).c. Find pX|y(x|y) and py|X(y|x)d. Are x and y independent? Why or why not?
The PDF of an amplitude X of a Gaussian signal x(t) is given by:
The PDF of a random variable X is given by the equation in the picture.
Chapter 4 Solutions
Applied Statistics and Probability for Engineers
Ch. 4.2 - 4-1. Suppose that f(x) = e−x for 0 < x. Determine...Ch. 4.2 - 4-2. Suppose that f (x) = 3(8x – x2)/256 for 0< x...Ch. 4.2 - 4-3. Suppose that f (x) = 0.5 cos x for −π/2 < x <...Ch. 4.2 - Prob. 4ECh. 4.2 - 4-5. Go Tutorial Suppose that for 3 < x < 5....Ch. 4.2 - Prob. 6ECh. 4.2 - 4-7. Suppose that f(x) = 1 .5x2 for −1 < x < 1....Ch. 4.2 - 4-8. The probability density function of the time...Ch. 4.2 - 4-9. The probability density function of the net...Ch. 4.2 - Prob. 10E
Ch. 4.2 - 4-11. The probability density function of the...Ch. 4.2 - Prob. 12ECh. 4.2 - 4-13. A test instrument needs to be calibrated...Ch. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.3 - 4-17. Suppose that the cumulative distribution...Ch. 4.3 - 4-18. Suppose that the cumulative distribution...Ch. 4.3 - 4-19. Determine the cumulative distribution...Ch. 4.3 - Prob. 20ECh. 4.3 - 4-21. Determine the cumulative distribution...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - 4-24. Determine the cumulative distribution...Ch. 4.3 - 4-25. Determine the cumulative distribution...Ch. 4.3 - 4-26. The probability density function of the time...Ch. 4.3 - 4-27. The gap width is an important property of a...Ch. 4.3 - Determine the probability density function for...Ch. 4.3 - Determine the probability density function for...Ch. 4.3 - Prob. 30ECh. 4.3 - Prob. 31ECh. 4.3 - Prob. 33ECh. 4.4 - 4-35. Suppose that f(x) = 0.25 for 0 < x < 4....Ch. 4.4 - 4-36. Suppose that f(x) = 0.125x for 0 < x < 4....Ch. 4.4 - 4-37. Suppose that f(x) = 1.5x2 for −1< x < 1....Ch. 4.4 - Prob. 38ECh. 4.4 - Prob. 39ECh. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - 4.42 Determine the mean and variance of the random...Ch. 4.4 - Prob. 43ECh. 4.4 - 4-45. Suppose that contamination particle size (in...Ch. 4.4 - 4-46. Suppose that the probability density...Ch. 4.4 - 4-47. The thickness of a conductive coating in...Ch. 4.4 - 4-48. The probability density function of the...Ch. 4.4 - Prob. 49ECh. 4.5 - 4-50. Suppose that X has a continuous uniform...Ch. 4.5 - 4-51. Suppose X has a continuous uniform...Ch. 4.5 - 4-52. The net weight in pounds of a packaged...Ch. 4.5 - 4-53. The thickness of a flange on an aircraft...Ch. 4.5 - Prob. 54ECh. 4.5 - Prob. 55ECh. 4.5 - 4-56. An adult can lose or gain two pounds of...Ch. 4.5 - 4-57. A show is scheduled to start at 9:00 a.m.,...Ch. 4.5 - 4-58. The volume of a shampoo filled into a...Ch. 4.5 - 4-59. An e-mail message will arrive at a time...Ch. 4.5 - 4-60. Measurement error that is continuous and...Ch. 4.5 - 4-61. A beacon transmits a signal every 10 minutes...Ch. 4.5 - Prob. 62ECh. 4.6 - 4-63. Use Appendix Table III to determine the...Ch. 4.6 - 4-64. Use Appendix Table III to determine the...Ch. 4.6 - 4-65. Assume that Z has a standard normal...Ch. 4.6 - 4-66. Assume that Z has a standard normal...Ch. 4.6 - Prob. 67ECh. 4.6 - Prob. 68ECh. 4.6 - Prob. 69ECh. 4.6 - 4-70. Assume that X is normally distributed with a...Ch. 4.6 - 4-71. The compressive strength of samples of...Ch. 4.6 - 4-72. The time until recharge for a battery in a...Ch. 4.6 - 4-73. An article in Knee Surgery Sports Traumatol...Ch. 4.6 - 4-74. Cholesterol is a fatty substance that is an...Ch. 4.6 - Prob. 75ECh. 4.6 - 4-76. The fill volume of an automated filling...Ch. 4.6 - 4-77. In the previous exercise, suppose that the...Ch. 4.6 - 4-78. A driver’s reaction time to visual stimulus...Ch. 4.6 - 4-79. The speed of a file transfer from a server...Ch. 4.6 - 4-80. In 2002, the average height of a woman aged...Ch. 4.6 - 4-81. In an accelerator center, an experiment...Ch. 4.6 - 4-82. The demand for water use in Phoenix in 2003...Ch. 4.6 - Prob. 83ECh. 4.6 - 4-84. The diameter of the dot produced by a...Ch. 4.6 - Prob. 85ECh. 4.6 - Prob. 86ECh. 4.6 - Prob. 87ECh. 4.6 - 4-88. A study by Bechtel et al., 2009, described...Ch. 4.6 - 4-89. An article in Atmospheric Chemistry and...Ch. 4.6 - 4-90. The length of stay at a specific emergency...Ch. 4.6 - Prob. 91ECh. 4.6 - 4-92. An article in Microelectronics Reliability...Ch. 4.6 - Prob. 93ECh. 4.6 - 4-94. An article in the Journal of Cardiovascular...Ch. 4.7 - 4-95. Suppose that X is a binomial random variable...Ch. 4.7 - 4-96. Suppose that X is a Poisson random variable...Ch. 4.7 - 4-97. Suppose that X has a Poisson distribution...Ch. 4.7 - 4-98. The manufacturing of semiconductor chips...Ch. 4.7 - 4-99. There were 49.7 million people with some...Ch. 4.7 - 4-100. Phoenix water is provided to approximately...Ch. 4.7 - 4-101. An electronic office product contains 5000...Ch. 4.7 - 4-102. A corporate Web site contains errors on 50...Ch. 4.7 - 4-103. Suppose that the number of asbestos...Ch. 4.7 - 4-104. A high-volume printer produces minor...Ch. 4.7 - 4-105. Hits to a high-volume Web site are assumed...Ch. 4.7 - 4-106. An acticle in Biometrics [“Integrative...Ch. 4.7 - 4-107. An article in Atmospheric Chemistry and...Ch. 4.7 - 4-108. A set of 200 independent patients take...Ch. 4.7 - Prob. 109ECh. 4.7 - 4-110. Cabs pass your workplace according to a...Ch. 4.7 - 4-111. The number of (large) inclusions in cast...Ch. 4.8 - 4-112. Suppose that X has an exponential...Ch. 4.8 - Prob. 113ECh. 4.8 - 4-114. Suppose that X has an exponential...Ch. 4.8 - 4-115. Suppose that the counts recorded by a...Ch. 4.8 - 4-116. Suppose that the log-ons to a computer...Ch. 4.8 - 4-117. The time between calls to a plumbing supply...Ch. 4.8 - 4-118. The life of automobile voltage regulators...Ch. 4.8 - 4-119. Suppose that the time to failure (in hours)...Ch. 4.8 - 4-120. The time between the arrival of electronic...Ch. 4.8 - 4-121. The time between arrivals of taxis at a...Ch. 4.8 - Prob. 122ECh. 4.8 - 4-123. According to results from the analysis of...Ch. 4.8 - 4-124. The distance between major cracks in a...Ch. 4.8 - 4-125. The lifetime of a mechanical assembly in a...Ch. 4.8 - 4-126. The time between arrivals of small aircraft...Ch. 4.8 - Prob. 127ECh. 4.8 - Prob. 128ECh. 4.8 - Prob. 129ECh. 4.8 - Prob. 130ECh. 4.8 - Prob. 131ECh. 4.8 - Prob. 132ECh. 4.8 - Prob. 133ECh. 4.8 - 4-134. Requests for service in a queuing model...Ch. 4.8 - 4-135. An article in Vaccine [“Modeling the...Ch. 4.8 - 4-136. An article in Ad Hoc Networks [“Underwater...Ch. 4.9 - 4-137. Use the properties of the gamma function to...Ch. 4.9 - Prob. 138ECh. 4.9 - 4-139. Calls to a telephone system follow a...Ch. 4.9 - Prob. 140ECh. 4.9 - Prob. 141ECh. 4.9 - Prob. 142ECh. 4.9 - Prob. 143ECh. 4.9 - Prob. 144ECh. 4.9 - Prob. 145ECh. 4.9 - Prob. 146ECh. 4.9 - Prob. 147ECh. 4.9 - 4-148. Use the result for the gamma distribution...Ch. 4.9 - Prob. 149ECh. 4.9 - 4-150. The total service time of a multistep...Ch. 4.9 - Prob. 151ECh. 4.9 - 4-152. An article in Mathematical Biosciences...Ch. 4.10 - Prob. 153ECh. 4.10 - Prob. 154ECh. 4.10 - Prob. 155ECh. 4.10 - Prob. 156ECh. 4.10 - Prob. 157ECh. 4.10 - 4-158. Assume that the life of a packaged magnetic...Ch. 4.10 - Prob. 159ECh. 4.10 - Prob. 160ECh. 4.10 - Prob. 162ECh. 4.10 - Prob. 163ECh. 4.10 - Prob. 164ECh. 4.10 - Prob. 165ECh. 4.10 - Prob. 167ECh. 4.10 - Prob. 168ECh. 4.10 - Prob. 169ECh. 4.11 - 4-170. Suppose that X has a lognormal distribution...Ch. 4.11 - Prob. 171ECh. 4.11 - 4-172. Suppose that X has a lognormal distribution...Ch. 4.11 - 4-173. The length of time (in seconds) that a user...Ch. 4.11 - 4-174. Suppose that X has a lognormal distribution...Ch. 4.11 - 4-175. The lifetime of a semiconductor laser has a...Ch. 4.11 - Prob. 176ECh. 4.11 - Prob. 177ECh. 4.11 - Prob. 178ECh. 4.11 - Prob. 179ECh. 4.11 - Prob. 180ECh. 4.11 - Prob. 181ECh. 4.11 - Prob. 182ECh. 4.11 - Prob. 183ECh. 4.12 - Prob. 184ECh. 4.12 - Prob. 185ECh. 4.12 - Prob. 186ECh. 4.12 - Prob. 187ECh. 4.12 - Prob. 188ECh. 4.12 - Prob. 189ECh. 4.12 - Prob. 190ECh. 4.12 - Prob. 191ECh. 4 - Prob. 192SECh. 4 - Prob. 193SECh. 4 - Prob. 194SECh. 4 - 4-195. + The length of an injection-molded plastic...Ch. 4 - 4-196. + The sick-leave time of employees in a...Ch. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - 4-199. + When a bus service reduces fares, a...Ch. 4 - Prob. 200SECh. 4 - Prob. 201SECh. 4 - Prob. 202SECh. 4 - Prob. 203SECh. 4 - Prob. 204SECh. 4 - 4-205. + The CPU of a personal computer has a...Ch. 4 - Prob. 206SECh. 4 - Prob. 207SECh. 4 - Prob. 208SECh. 4 - 4-209. + Without an automated irrigation system,...Ch. 4 - 4-210. With an automated irrigation system, a...Ch. 4 - Prob. 211SECh. 4 - Prob. 212SECh. 4 - Prob. 213SECh. 4 - Prob. 214SECh. 4 - Prob. 215SECh. 4 - Prob. 216SECh. 4 - 4-217. + A square inch of carpeting contains 50...Ch. 4 - Prob. 218SECh. 4 - Prob. 219SECh. 4 - 4-221. Consider the regional right ventricle...Ch. 4 - Prob. 222SECh. 4 - Prob. 223SECh. 4 - Prob. 224SECh. 4 - Prob. 225SECh. 4 - Prob. 226SECh. 4 - Prob. 227SECh. 4 - Prob. 228SECh. 4 - Prob. 229SECh. 4 - Prob. 230SECh. 4 - Prob. 231SECh. 4 - Prob. 232SECh. 4 - Prob. 233SECh. 4 - 4-234. A process is said to be of six-sigma...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- For a binary asymmetric channel with Py|X(0|1) = 0.1 and Py|X(1|0) = 0.2; PX(0) = 0.4 isthe probability of a bit of “0” being transmitted. X is the transmitted digit, and Y is the received digit.a. Find the values of Py(0) and Py(1).b. What is the probability that only 0s will be received for a sequence of 10 digits transmitted?c. What is the probability that 8 1s and 2 0s will be received for the same sequence of 10 digits?d. What is the probability that at least 5 0s will be received for the same sequence of 10 digits?arrow_forwardV2 360 Step down + I₁ = I2 10KVA 120V 10KVA 1₂ = 360-120 or 2nd Ratio's V₂ m 120 Ratio= 360 √2 H I2 I, + I2 120arrow_forwardQ2. [20 points] An amplitude X of a Gaussian signal x(t) has a mean value of 2 and an RMS value of √(10), i.e. square root of 10. Determine the PDF of x(t).arrow_forward
- In a network with 12 links, one of the links has failed. The failed link is randomlylocated. An electrical engineer tests the links one by one until the failed link is found.a. What is the probability that the engineer will find the failed link in the first test?b. What is the probability that the engineer will find the failed link in five tests?Note: You should assume that for Part b, the five tests are done consecutively.arrow_forwardProblem 3. Pricing a multi-stock option the Margrabe formula The purpose of this problem is to price a swap option in a 2-stock model, similarly as what we did in the example in the lectures. We consider a two-dimensional Brownian motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices are modeled by the following equations: dX = dY₁ = X₁ (rdt+ rdt+0₁dW!) (²)), Y₁ (rdt+dW+0zdW!"), with Xo xo and Yo =yo. This corresponds to the multi-stock model studied in class, but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure P is already the risk-neutral measure (Both stocks have rate of return r). We write σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to exchange one share of X for one share of Y. That is, the option has payoff F=(Yr-XT). (a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for the process Xt. Reminder before proceeding to question (b): Girsanov's theorem…arrow_forwardProblem 1. Multi-stock model We consider a 2-stock model similar to the one studied in class. Namely, we consider = S(1) S(2) = S(¹) exp (σ1B(1) + (M1 - 0/1 ) S(²) exp (02B(2) + (H₂- M2 where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with t≥0 Cov (B(¹), B(2)) = p min{t, s}. " The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian motion (W+)+20 (W(1), W(2))+20 such that = S(1) S(2) = = S(¹) exp (011W(¹) + (μ₁ - 01/1) t) 롱) S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t). where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p). Hint: The constants will follow the formulas developed in the lectures. (a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2) functions of (B(1), B(²)). as (b) Using the formulas obtained in (a), show that the process (WA) is actually a 2- dimensional standard Brownian motion (i.e. show that each component is normal, with mean 0, variance t, and that their…arrow_forward
- The scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forwardBusiness discussarrow_forwardBusiness discussarrow_forward
- I just need to know why this is wrong below: What is the test statistic W? W=5 (incorrect) and What is the p-value of this test? (p-value < 0.001-- incorrect) Use the Wilcoxon signed rank test to test the hypothesis that the median number of pages in the statistics books in the library from which the sample was taken is 400. A sample of 12 statistics books have the following numbers of pages pages 127 217 486 132 397 297 396 327 292 256 358 272 What is the sum of the negative ranks (W-)? 75 What is the sum of the positive ranks (W+)? 5What type of test is this? two tailedWhat is the test statistic W? 5 These are the critical values for a 1-tailed Wilcoxon Signed Rank test for n=12 Alpha Level 0.001 0.005 0.01 0.025 0.05 0.1 0.2 Critical Value 75 70 68 64 60 56 50 What is the p-value for this test? p-value < 0.001arrow_forwardons 12. A sociologist hypothesizes that the crime rate is higher in areas with higher poverty rate and lower median income. She col- lects data on the crime rate (crimes per 100,000 residents), the poverty rate (in %), and the median income (in $1,000s) from 41 New England cities. A portion of the regression results is shown in the following table. Standard Coefficients error t stat p-value Intercept -301.62 549.71 -0.55 0.5864 Poverty 53.16 14.22 3.74 0.0006 Income 4.95 8.26 0.60 0.5526 a. b. Are the signs as expected on the slope coefficients? Predict the crime rate in an area with a poverty rate of 20% and a median income of $50,000. 3. Using data from 50 workarrow_forward2. The owner of several used-car dealerships believes that the selling price of a used car can best be predicted using the car's age. He uses data on the recent selling price (in $) and age of 20 used sedans to estimate Price = Po + B₁Age + ε. A portion of the regression results is shown in the accompanying table. Standard Coefficients Intercept 21187.94 Error 733.42 t Stat p-value 28.89 1.56E-16 Age -1208.25 128.95 -9.37 2.41E-08 a. What is the estimate for B₁? Interpret this value. b. What is the sample regression equation? C. Predict the selling price of a 5-year-old sedan.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman

MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc

Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning

Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning

Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON

The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY