Topology
2nd Edition
ISBN: 9780134689517
Author: Munkres, James R.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.34, Problem 7E
A space X is locally metrizable if each point x of X has a neighborhood that is metrizable in the subspace topology. Show that a compact Hausdorff space X is metrizable if it is locally metrizable. [Hint: Show that X is a finite union of open subspaces, each of which has a countable basis.]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve the system of equation for y using Cramer's rule. Hint: The
determinant of the coefficient matrix is -23.
-
5x + y − z = −7
2x-y-2z = 6
3x+2z-7
eric
pez
Xte
in
z=
Therefore, we have
(x, y, z)=(3.0000,
83.6.1 Exercise
Gauss-Seidel iteration with
Start with (x, y, z) = (0, 0, 0). Use the convergent Jacobi i
Tol=10 to solve the following systems:
1.
5x-y+z = 10
2x-8y-z=11
-x+y+4z=3
iteration (x
Assi 2
Assi 3.
4.
x-5y-z=-8
4x-y- z=13
2x - y-6z=-2
4x y + z = 7
4x-8y + z = -21
-2x+ y +5z = 15
4x + y - z=13
2x - y-6z=-2
x-5y- z=-8
realme Shot on realme C30
2025.01.31 22:35
f
Use Pascal's triangle to expand the binomial
(6m+2)^2
Chapter 4 Solutions
Topology
Ch. 4.30 - Show that l and I02 are not metrizable.Ch. 4.30 - Which of our four countability axioms does S...Ch. 4.30 - Which of our four countability axioms does in the...Ch. 4.30 - Let A be a closed subspace of X. Show that if X is...Ch. 4.30 - Prob. 10ECh. 4.30 - Let f:XY be continuous. Show that if X is...Ch. 4.30 - Let f:XY be continuous open map. Show that if X...Ch. 4.30 - Show that if X has a countable dense subset, every...Ch. 4.30 - Show that if X is Lindelof and Y is compact, then...Ch. 4.30 - Give I the uniform metric, where I=[0,1]. Let...
Ch. 4.30 - Prob. 16ECh. 4.30 - Prob. 17ECh. 4.30 - Prob. 18ECh. 4.31 - Show that if X is regular, every pair of points of...Ch. 4.31 - Show that if X is normal, every pair of disjoint...Ch. 4.31 - Show that every order topology is regular.Ch. 4.31 - Prob. 4ECh. 4.31 - Prob. 5ECh. 4.32 - Which of the following spaces are completely...Ch. 4.32 - Prob. 8ECh. 4.32 - Prove the following: Theorem: If J is uncountable,...Ch. 4.32 - Prob. 10ECh. 4.33 - Examine the proof of the Urysohn lemma, and show...Ch. 4.33 - a Show that a connected normal space having more...Ch. 4.33 - Give a direct proof of the Urysohn lemma for a...Ch. 4.33 - Prob. 4ECh. 4.33 - Prob. 5ECh. 4.33 - Prob. 8ECh. 4.34 - Give an example showing that a Hausdorff space...Ch. 4.34 - Give an example showing that a space can be...Ch. 4.34 - Let X be a compact Hausdorff space. Show that X is...Ch. 4.34 - Let X be a locally compact Hausdorff space. Is it...Ch. 4.34 - Let X be a locally compact Hausdorff space. Let Y...Ch. 4.34 - Check the details of the proof of Theorem 34.2.Ch. 4.34 - A space X is locally metrizable if each point x of...Ch. 4.34 - Show that a regular Lindelof space is metrizable...Ch. 4.35 - Show that the Tietze extension theorem implies the...Ch. 4.35 - In the proof of the Tietze theorem, how essential...Ch. 4.35 - Let X be metrizable. Show that the following are...Ch. 4.35 - Let Z be a topological space. If Y is a subspace...Ch. 4.35 - Prob. 5ECh. 4.35 - Let Y be a normal space. The Y is said to be an...Ch. 4.35 - a Show the logarithmic spiral...Ch. 4.35 - Prove the following: Theorem. Let Y be a normal...Ch. 4.36 - Prove that every manifold is regular and hence...Ch. 4.36 - Let X be a compact Hausdorff space. Suppose that...Ch. 4.36 - Let X be a Hausdorff space such that each point of...Ch. 4.36 - Prob. 5ECh. 4.SE - Consider the following properties a space may...Ch. 4.SE - Consider the following properties a space may...Ch. 4.SE - Prob. 3SECh. 4.SE - Consider the following properties a space may...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Listen A falling object travels a distance given by the formula d = 6t + 9t2 where d is in feet and t is the time in seconds. How many seconds will it take for the object to travel 112 feet? Round answer to 2 decimal places. (Write the number, not the units). Your Answer:arrow_forwardSolve by the quadratic formula or completing the square to obtain exact solutions. 2 e 104 OA) -16±3√6 B) 8±√10 O c) -8±√10 OD) 8±3√√6 Uarrow_forwardQuestion 14 (1 point) Listen The frame on a picture is 18 in by 22 in outside and is of uniform width. Using algebraic methods, what is the width of the frame if the inner area of the picture shown is 250 in²2? Write answer to 2 decimal places. (Write the number with no units). 18 in Your Answer: 22 inarrow_forward
- ◄ Listen A vacant lot is being converted into a community garden. The garden and a walkway around its perimeter have an area of 560 square feet. Find the width of the walkway (x) if the garden measures 15 feet wide by 19 feet long. Write answer to 2 decimal places. (Write the number without units). X 15 feet Your Answer: 19 feet Xarrow_forwardListen A stuntman jumps from a roof 440 feet from the ground. How long will it take him to reach the ground? Use the formula, distance, d = 16t2, (where t is in seconds). Write answer to 1 decimal place. (Write the number, not the units). Your Answer:arrow_forwardSolve x² - 10x + 24 = 0 ○ A) 4,6 B) -12, -2 C) 12,2 D) -4, -6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY