
Topology
2nd Edition
ISBN: 9780134689517
Author: Munkres, James R.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.30, Problem 9E
Let A be a closed subspace of X. Show that if X is Lindelof, then A is Lindelof. Show by example that if X has a countable dense subset, A need not have a countable dense subset.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Questions
1. Identify and describe potential bias in the study.
2. Identify and describe the way in which the selected participants may or may not represent the population as a whole.
3. Identify and describe the possible problems with the end results since the majority will be from females rather than an even
split.
4. Identify and describe the possible problems with identifying females as possibly more vulnerable based on the data
collected.
5. Identify a possible null hypothesis and problems in how the study might address this null hypothesis.
6. Identify one possible method of improving the study design and describe how it would improve the validity of the
conclusions.
7. Identify a second possible method of improving the study design and describe how it would improve the validity of the
conclusions.
The Course Name Real Analysis please Solve questions by Real Analysis
part 3 of the question is:
A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes.
What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model.
Will the last passenger to board the ride need to wait in order to exit the ride? Explain.
Chapter 4 Solutions
Topology
Ch. 4.30 - Show that l and I02 are not metrizable.Ch. 4.30 - Which of our four countability axioms does S...Ch. 4.30 - Which of our four countability axioms does in the...Ch. 4.30 - Let A be a closed subspace of X. Show that if X is...Ch. 4.30 - Prob. 10ECh. 4.30 - Let f:XY be continuous. Show that if X is...Ch. 4.30 - Let f:XY be continuous open map. Show that if X...Ch. 4.30 - Show that if X has a countable dense subset, every...Ch. 4.30 - Show that if X is Lindelof and Y is compact, then...Ch. 4.30 - Give I the uniform metric, where I=[0,1]. Let...
Ch. 4.30 - Prob. 16ECh. 4.30 - Prob. 17ECh. 4.30 - Prob. 18ECh. 4.31 - Show that if X is regular, every pair of points of...Ch. 4.31 - Show that if X is normal, every pair of disjoint...Ch. 4.31 - Show that every order topology is regular.Ch. 4.31 - Prob. 4ECh. 4.31 - Prob. 5ECh. 4.32 - Which of the following spaces are completely...Ch. 4.32 - Prob. 8ECh. 4.32 - Prove the following: Theorem: If J is uncountable,...Ch. 4.32 - Prob. 10ECh. 4.33 - Examine the proof of the Urysohn lemma, and show...Ch. 4.33 - a Show that a connected normal space having more...Ch. 4.33 - Give a direct proof of the Urysohn lemma for a...Ch. 4.33 - Prob. 4ECh. 4.33 - Prob. 5ECh. 4.33 - Prob. 8ECh. 4.34 - Give an example showing that a Hausdorff space...Ch. 4.34 - Give an example showing that a space can be...Ch. 4.34 - Let X be a compact Hausdorff space. Show that X is...Ch. 4.34 - Let X be a locally compact Hausdorff space. Is it...Ch. 4.34 - Let X be a locally compact Hausdorff space. Let Y...Ch. 4.34 - Check the details of the proof of Theorem 34.2.Ch. 4.34 - A space X is locally metrizable if each point x of...Ch. 4.34 - Show that a regular Lindelof space is metrizable...Ch. 4.35 - Show that the Tietze extension theorem implies the...Ch. 4.35 - In the proof of the Tietze theorem, how essential...Ch. 4.35 - Let X be metrizable. Show that the following are...Ch. 4.35 - Let Z be a topological space. If Y is a subspace...Ch. 4.35 - Prob. 5ECh. 4.35 - Let Y be a normal space. The Y is said to be an...Ch. 4.35 - a Show the logarithmic spiral...Ch. 4.35 - Prove the following: Theorem. Let Y be a normal...Ch. 4.36 - Prove that every manifold is regular and hence...Ch. 4.36 - Let X be a compact Hausdorff space. Suppose that...Ch. 4.36 - Let X be a Hausdorff space such that each point of...Ch. 4.36 - Prob. 5ECh. 4.SE - Consider the following properties a space may...Ch. 4.SE - Consider the following properties a space may...Ch. 4.SE - Prob. 3SECh. 4.SE - Consider the following properties a space may...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 2. The duration of the ride is 15 min. (a) How many times does the last passenger who boarded the ride make a complete loop on the Ferris wheel? (b) What is the position of that passenger when the ride ends?arrow_forward3. A scientist recorded the movement of a pendulum for 10 s. The scientist began recording when the pendulum was at its resting position. The pendulum then moved right (positive displacement) and left (negative displacement) several times. The pendulum took 4 s to swing to the right and the left and then return to its resting position. The pendulum's furthest distance to either side was 6 in. Graph the function that represents the pendulum's displacement as a function of time. Answer: f(t) (a) Write an equation to represent the displacement of the pendulum as a function of time. (b) Graph the function. 10 9 8 7 6 5 4 3 2 1 0 t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -1 -5. -6 -7 -8 -9 -10-arrow_forwardA power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. (a) What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. (b) Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forward
- The Colossus Ferris wheel debuted at the 1984 New Orleans World's Fair. The ride is 180 ft tall, and passengers board the ride at an initial height of 15 ft above the ground. The height above ground, h, of a passenger on the ride is a periodic function of time, t. The graph displays the height above ground of the last passenger to board over the course of the 15 min ride. Height of Passenger in Ferris Wheel 180 160 140- €120 Height, h (ft) 100 80 60 40 20 0 ך 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time of operation, t (min) Sine function model: h = −82.5 cos (3πt) + 97.5 where h is the height of the passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the period of the sine function model? Interpret the period you found in the context of the operation of the Ferris wheel. Answer:arrow_forward1. Graph the function f(x)=sin(x) −2¸ Answer: y -2π 一元 1 −1 -2 -3 -4+ 元 2πarrow_forward3. Graph the function f(x) = −(x-2)²+4 Answer: f(x) 6 5 4 3 2+ 1 -6-5 -4-3-2-1 × 1 2 3 4 5 6 -1 -2+ ရာ -3+ -4+ -5 -6arrow_forward
- 2. Graph the function f(x) = cos(2x)+1 Answer: -2π 一元 y 3 2- 1 -1 -2+ ရာ -3- Π 2πarrow_forward2. Graph the function f(x) = |x+1+2 Answer: -6-5-4-3-2-1 f(x) 6 5 4 3 2 1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6arrow_forward1. The table shows values of a function f(x). What is the average rate of change of f(x) over the interval from x = 5 to x = 9? Show your work. X 4 f(x) LO 5 6 7 8 9 10 -2 8 10 11 14 18arrow_forward
- • Find a real-world situation that can be represented by a sinusoidal function. You may find something online that represents a sinusoidal graph or you can create a sinusoidal graph yourself with a measuring tape and a rope. • Provide a graph complete with labels and units for the x- and y-axes. • Describe the amplitude, period, and vertical shift in terms of the real-world situation.arrow_forwardf(x) = 4x²+6x 2. Given g(x) = 2x² +13x+15 and find 41 (4)(x) Show your work.arrow_forwardf(x) = x² − 6x + 8 3. Given and g(x) = x -2 solve f(x) = g(x) using a table of values. Show your work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY