Nutrition . A dietitian in a hospital is to arrange a special diet composed of three basic foods. The diet is to include exactly 340 units of calcium, 180 units of iron, and 220 units of vitamin A. The number of units per ounce of each special ingredient for each of the foods is indicated in the table. (A) How many ounces of each food must be used to meet the diet requirements? (B) How is the diet in part (A) affected if food C is not used? (C) How is the diet in part (A) affected if the vitamin A requirement is dropped?
Nutrition . A dietitian in a hospital is to arrange a special diet composed of three basic foods. The diet is to include exactly 340 units of calcium, 180 units of iron, and 220 units of vitamin A. The number of units per ounce of each special ingredient for each of the foods is indicated in the table. (A) How many ounces of each food must be used to meet the diet requirements? (B) How is the diet in part (A) affected if food C is not used? (C) How is the diet in part (A) affected if the vitamin A requirement is dropped?
Solution Summary: The author calculates the quantity of each food A, B, and C that should be used to meet the requirement to arrange a diet that needs exactly 340 units of calcium, 180 unit of iron and 220
Nutrition. A dietitian in a hospital is to arrange a special diet composed of three basic foods. The diet is to include exactly
340
units of calcium,
180
units of iron, and
220
units of vitamin A. The number of units per ounce of each special ingredient for each of the foods is indicated in the table.
(A) How many ounces of each food must be used to meet the diet requirements?
(B) How is the diet in part (A) affected if food
C
is not used?
(C) How is the diet in part (A) affected if the vitamin A requirement is dropped?
5. [10 marks]
Let G = (V,E) be a graph, and let X C V be a set of vertices. Prove that if
|S||N(S)\X for every SCX, then G contains a matching M that matches every
vertex of X (i.e., such that every x X is an end of an edge in M).
Q/show that 2" +4 has a removable discontinuity at Z=2i
Z(≥2-21)
Refer to page 100 for problems on graph theory and linear algebra.
Instructions:
•
Analyze the adjacency matrix of a given graph to find its eigenvalues and eigenvectors.
• Interpret the eigenvalues in the context of graph properties like connectivity or clustering.
Discuss applications of spectral graph theory in network analysis.
Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]
Chapter 4 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.