Dennis wants to use cottage cheese and yogurt to increase the amount of protein and calcium in his daily diet. An ounce of cottage cheese contains 3 grams of protein and 15 milligrams of calcium. An ounce of yogurt contains 1 gram of protein and 41 milligrams of calcium. How many ounces of cottage cheese and yogurt should Dennis eat each day to provide exactly 62 grams of protein and 760 milligrams of calcium?
Dennis wants to use cottage cheese and yogurt to increase the amount of protein and calcium in his daily diet. An ounce of cottage cheese contains 3 grams of protein and 15 milligrams of calcium. An ounce of yogurt contains 1 gram of protein and 41 milligrams of calcium. How many ounces of cottage cheese and yogurt should Dennis eat each day to provide exactly 62 grams of protein and 760 milligrams of calcium?
Solution Summary: The author calculates the weight in ounce of cottage cheese and yogurt to have 62 grams of protein and 760 milligrams of calcium.
Dennis wants to use cottage cheese and yogurt to increase the amount of protein and calcium in his daily diet. An ounce of cottage cheese contains
3
grams of protein and
15
milligrams of calcium. An ounce of yogurt contains
1
gram of protein and
41
milligrams of calcium. How many ounces of cottage cheese and yogurt should Dennis eat each day to provide exactly
62
grams of protein and
760
milligrams of calcium?
= 1. Show
(a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g":
that the group algebra KG has a presentation KG = K(X)/(X” — 1).
(b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module
with vector space K2 and where the action of X is given by the matrix
Compute End(V) in the cases
(i) x = p,
(ii) xμl.
(67) ·
(c) If M and N are submodules of a module L, prove that there is an isomorphism
M/MON (M+N)/N.
(The Second Isomorphism Theorem for modules.)
You may assume that MON is a submodule of M, M + N is a submodule of L
and the First Isomorphism Theorem for modules.
(a) Define the notion of an ideal I in an algebra A. Define the product on the quotient
algebra A/I, and show that it is well-defined.
(b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra
of A and that SnI is an ideal in S.
(c) Let A be the subset of M3 (K) given by matrices of the form
a b
0 a 0
00 d
Show that A is a subalgebra of M3(K).
Ꮖ
Compute the ideal I of A generated by the element and show that A/I K as
algebras, where
0 1 0
x =
0 0 0
001
Chapter 4 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.