bartleby

Videos

Textbook Question
Book Icon
Chapter 43, Problem 53AP

As part of his discovery of the neutron in 1932, James Chadwick determined the mass of the newly identified particle by firing a beam of fast neutrons, all having the same speed, at two different targets and measuring the maximum recoil speeds of the target nuclei. The maximum speeds arise when an elastic head-on collision occurs between a neutron and a stationary target nucleus. (a) Represent the masses and final speeds of the two target nuclei as m1, v1, m2, and v2 and assume Newtonian mechanics applies. Show that the neutron mass can be calculated from the equation

m n = m 1 v 1 m 2 v 2 v 2 v 1

(b) Chadwick directed a beam of neutrons (produced from a nuclear reaction) on paraffin, which contains hydrogen. The maximum speed of the protons ejected was found to be 3.30 × 107 m/s. Because the velocity of the neutrons could not be determined directly, a second experiment was performed using neutrons from the same source and nitrogen nuclei as the target. The maximum recoil speed of the nitrogen nuclei was found to be 4.70 × 106 m/s. The masses of a proton and a nitrogen nucleus were taken as 1.00 u and 14.0 u, respectively. What was Chadwick’s value for the neutron mass?

Blurred answer
Students have asked these similar questions
Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (19 Au). The energy of the incoming helium nucleus was 7.35 x 10 -13 j, and the masses of the helium and gold nuclei were 6.68 x 10-27 kg and 3.29 x 10-25 kg, respectively (note that their mass ratio is 4 to 197. Assume that the helium nucleus travels in the +x-direction before the collision.) (a) If a helium nucleus scatters to an angle of 112° during an elastic collision with a gold nucleus, calculate the helium nucleus' final speed (in m/s) and the final velocity (magnitude in m/s and direction counterclockwise from the +x-axis) of the gold nucleus. 120° He nucleus Gold nucleus 4He speed m/s 197Au velocity m/s 197 Au direction ° counterclockwise from the +x-axis (b) What is the final kinetic energy (in J) of the helium nucleus? J
Po-204 (mass=204 amu) goes alpha decay. Show that, as a result of ejecting alpha particle (He-4, mass=4 amu), the daughter nucleus recoils with a speed equal to 2% that of the alpha particle.
A stationary nucleus of Po-204 (mass = 204 amu) undergoes alpha decay. Show that, as a result of ejecting alpha particle (He-4: mass = 4 amu), the daughter nucleus recoils with a speed equal to 2% that of the alpha particle.

Chapter 43 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY