Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 43, Problem 52P

A direct and relatively simple demonstration of zero DC resistance can be carried out using the four-point probe method. The probe shown in Figure P43.52 consists of a disk of YBa2Cu3O7 (a high-Tc superconductor) to which four wires are attached. Current is maintained through the sample by applying a DC voltage between points a and b, and it is measured with a DC ammeter. The current can be varied with the variable resistance R. The potential difference ΔVcd between c and d is measured with a digital voltmeter. When the probe is immersed in liquid nitrogen, the sample quickly cools to 77 K, below the critical temperature of the material, 92 K. The current remains approximately constant, but ΔVcd drops abruptly to zero, (a) Explain this observation on the basis of what you know about superconductors. (b) The data in the accompanying table represent actual values of ΔVcd for different values of I taken on the sample at room temperature in the senior author’s laboratory. A 6-V battery in series with a variable resistor R supplied the current. The values of R ranged from 10 Ω to 100 Ω. Make an I-ΔV plot of the data and determine whether the sample behaves in a linear manner, (c) From the data, obtain a value for the DC resistance of the sample at room temperature. (d) At room temperature, it was found that ΔVcd = 2.234 mV for I = 100.3 mA, but after the sample was cooled to 77 K, ΔVcd = 0 and I = 98.1 mA. What do you think might have caused the slight decrease in current?

Chapter 43, Problem 52P, A direct and relatively simple demonstration of zero DC resistance can be carried out using the , example  1

Figure P43.52

Current Versus Potential Difference ΔVcd Measured in a Bulk Ceramic Sample of YBa2Cu3O7−δ at Room Temperature

Chapter 43, Problem 52P, A direct and relatively simple demonstration of zero DC resistance can be carried out using the , example  2

Blurred answer
Students have asked these similar questions
5. a. In an electricity experiment, it was observed that as the potential difference in volts across a thin platinum wire increases, the current in amperes changes as follows: (V,I) = (0,0), (1.0,0.112), (3.0,0.337), and (6.1,0.675). Plot the graph of potential difference as a function of current and indicate whether the platinum satisfies Ohm's Law. If so, what is the resistance of the wire?
From Kirchoff's law, the current I in an RC (resistor-capacitor) circuit during discharging obeys the equation R ²+²=C² = ( di(t) 1(t) dt a. Find I (t). b. For a capacitance of 10,000 uF charged to 100 V and discharging through a resistance of 1 m2, find the current I for t = 0 and for t = 100 sec. Note: The initial voltage is IR or Q/C, where I = dQ/dt.
For the circuit shown in the figure, C = 12 µF and R = 8.5 MQ. Initially the switch S is open with the capacitor charged to a voltage of 80 V. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor when the current in the circuit is 3.3 HA? Hint: Use the current discharge equation to find the time. Then put that time into the discharge function for the charge on the capacitor. O 340 uc Ο 480 μc O 620 uC Ο 700 μC O 350 uc

Chapter 43 Solutions

Physics for Scientists and Engineers With Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY