
Concept explainers
True statements among the following statements about a superconductor below its critical temperature.

Answer to Problem 1OQ
(a) False
(b) False
(c) True
(d) True
(e) True
Explanation of Solution
(a)
A super conductor is a material that offers zero resistance to the passage of electrons. It exhibits superconductivity below a particular temperature called critical temperature. They also expels all the magnetic flux lines.
When the temperature of a super conductor is reduced beyond its critical temperature, all the magnetic field lines from the conductor will be expelled. So if the super conductor carried infinite current, it would produce infinite magnetic field which is against the theory of super conductors. Hence statement (a) is
(b)
A conductor becomes super conductor if the temperature is reduced below the critical temperature of the conductor. A condition that they should carry some non-zero current in it does not exist. So statement (b) is
(c)
Write the expression for resistivity of a conductor.
Here,
For a superconductor under critical temperature, the resistivity is zero. From the above equation, if resistivity has to be zero, then electric field must be zero. Thus option (c) is
(d)
When the temperature of a conductor is reduced below its critical temperature, resistance reduces to zero and all the magnetic field lines inside the conductor is expelled. Then the conductor is said to be a super conductor. When the temperature is lowered, the electrons will rearrange themselves to make the net magnetic field equal to zero. Thus option (d) is
(e)
For internal energy to be produced, the charge carriers should collide with the lattice ions. For normal conductors the charge carriers while moving collide with the lattice and produce energy. But in super conductor the current is carried by cooper pairs. But cooper pairs never collide with lattice as they remain in pairs. So internal energy is produced. Thus option (e) is
Want to see more full solutions like this?
Chapter 43 Solutions
Physics for Scientists and Engineers With Modern Physics
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





