Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 43, Problem 1OQ
To determine

True statements among the following statements about a superconductor below its critical temperature.

Expert Solution & Answer
Check Mark

Answer to Problem 1OQ

(a)        False

(b)        False

(c)        True

(d)        True

(e)        True

Explanation of Solution

(a)

A super conductor is a material that offers zero resistance to the passage of electrons. It exhibits superconductivity below a particular temperature called critical temperature. They also expels all the magnetic flux lines.

When the temperature of a super conductor is reduced beyond its critical temperature, all the magnetic field lines from the conductor will be expelled. So if the super conductor carried infinite current, it would produce infinite magnetic field which is against the theory of super conductors. Hence statement (a) is False_.

(b)

A conductor becomes super conductor if the temperature is reduced below the critical temperature of the conductor. A condition that they should carry some non-zero current in it does not exist. So statement (b) is False_.

(c)

Write the expression for resistivity of a conductor.

    ρ=EJ

Here, ρ is the resistivity of a conductor, E is the electric field, and J is the current density.

For a superconductor under critical temperature, the resistivity is zero. From the above equation, if resistivity has to be zero, then electric field must be zero. Thus option (c) is True_.

(d)

When the temperature of a conductor is reduced below its critical temperature, resistance reduces to zero and all the magnetic field lines inside the conductor is expelled. Then the conductor is said to be a super conductor. When the temperature is lowered, the electrons will rearrange themselves to make the net magnetic field equal to zero. Thus option (d) is True_.

(e)

For internal energy to be produced, the charge carriers should collide with the lattice ions. For normal conductors the charge carriers while moving collide with the lattice and produce energy. But in super conductor the current is carried by cooper pairs. But cooper pairs never collide with lattice as they remain in pairs. So internal energy is produced. Thus option (e) is True_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s

Chapter 43 Solutions

Physics for Scientists and Engineers With Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Ising model | A Bird's Eye View | Solid State Physics; Author: Pretty Much Physics;https://www.youtube.com/watch?v=1CCZkHPrhzk;License: Standard YouTube License, CC-BY