To calculate:To find which equation will best help to find how much closer Proxima Centauri is to Earth than Barnard’s Star

Answer to Problem 51STP
Equation will best help to find how much closer Proxima Centauri is to Earth than Barnard’s Star is
Explanation of Solution
Given information:Table showing the five stars nearest to Earth
Star | Distance (light-years) |
Proxima Centauri | 4.22 |
Alpha Centauri A | 4.40 |
Alpha Centauri B | 4.40 |
Barnard’s Star | 5.94 |
Wolf 359 | 7.79 |
Calculation:
From the table,
Distance between Earth and Proxima Centauri
Distance between Earth and Barnard’s Star
In order to find how much closer Proxima Centauri is to Earth than Barnard’s start, one need to find the distance between the two stars.
Let distance between Proxima Centaury and Barnard’s star is
Distance between Earth and Barnard’s star is sum of distance between Earth and Proxima Centauri and distance between the starts
Therefore, we get
Hence, equation will best help to find how much closer Proxima Centauri is to Earth than Barnard’s Star is
Therefore, correct option is B
Chapter 4 Solutions
EP PRE-ALGEBRA-STUDENTWORKS PLUS(1 YR.)
Additional Math Textbook Solutions
Elementary Statistics (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Basic Business Statistics, Student Value Edition
Elementary Statistics: Picturing the World (7th Edition)
- Assume a bivariate patch p(u, v) over the unit square [0, 1]² that is given as a tensor product patch where u-sections (u fixed to some constant û; v varying across [0, 1]) are quadratic polynomials Pu:û(v) = p(û, v) while v-sections are lines pv:ô (u) = p(u, v). The boundary lines pv:o(u) and pv:1 (u) are specified by their end points p(0,0) 0.8 and p(1,0) 0.2 as well as p(0, 1) 0.3 and p(1, 1) = 0.8. The boundary quadratics pu:o(v) and pu:1 (v) interpolate p(0,0.5) = 0.1 and p(1, 0.5) = 0.9 in addition to the above given four corner-values. = = = Use Pu:û(v) = (1, v, v² ) Mq (Pu:û(0), Pu:û (0.5), Pu:û(1)) with Ma = 1 0 0 -3 4-1 2 4 2 (Pv:ô as well as pu: (u) = (1, u) M₁ (pv:v (0), P: (1)) with M₁ = = (19) 0 to formulate p(u, v) using the "geometric input" G with G = = (P(0,0%) p(0,0) p(0,0.5) p(0,1) ) = ( 0.39 0.8 0.1 0.3 0.2 0.9 0.8 p(1,0) p(1, 0.5) p(1, 1) See the figure below for (left) a selection of iso-lines of p(u, v) and (right) a 3D rendering of p(u, v) as a height surface…arrow_forwardO Functions Composition of two functions: Domain and... Two functions ƒ and g are defined in the figure below. 76 2 8 5 7 8 19 8 9 Domain of f Range of f Domain of g Range of g 3/5 Anthony Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: ☐ (b) Range of gof: ☐ Х Explanation Check 0,0,... Español لكا ©2025 McGraw Hill LLC. All Rights Reserved Torms of lico Privacy Contor Accessibility.arrow_forwardTwo functions ƒ and g are defined in the figure below. g 6 6 7 8 8 8 9 Domain of f Range of f Domain of g Range of g Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: (b) Range of gof: ☐ ☑ 0,0,...arrow_forward
- Done Oli ○ Functions Composition of two functions: Domain and range Two functions 0 g 3 4 6 www-awy.aleks.com g and ƒ are defined in the figure below. 8 8 9 Domain of g Range of g Domain of f Range of f 0/5 Anthony Find the domain and range of the composition f.g. Write your answers in set notation. (a) Domain of fog: ☐ (b) Range of fog: ☐ Х Explanation Check 0,0,... Español © 2025 McGraw HillLLC. AIL Rights Reserved Terms of Use | Privacy Center Accessibilityarrow_forwardUse the graph of the function y = g(x) below to answer the questions. y' -5 -4 4- 3- 27 -2 -3+ -4 x 4 (a) Is g(-2) negative? Yes No (b) For which value(s) of x is g(x) > 0? Write your answer using interval notation. ☐ (c) For which value(s) of x is g(x) = 0? If there is more than one value, separate them with commas. 0,0... (0,0) (0,0) (0,0) (0,0) OVO 0arrow_forwardIt is given that E4E3E2E1A=⎡⎣⎢⎢⎢−1002−40488⎤⎦⎥⎥⎥. Here the matrices E4, E3, E2, and, E1 are: E1=⎡⎣⎢⎢⎢100010008⎤⎦⎥⎥⎥E2=⎡⎣⎢⎢⎢100010−501⎤⎦⎥⎥⎥E3=⎡⎣⎢⎢⎢1000−10001⎤⎦⎥⎥⎥E4=⎡⎣⎢⎢⎢001010100⎤⎦⎥⎥⎥arrow_forward
- It is given that E4E3E2E1A=⎡⎣⎢⎢⎢−1002−40488⎤⎦⎥⎥⎥. Here the matrices E4, E3, E2, and, E1 are: E1=⎡⎣⎢⎢⎢100010008⎤⎦⎥⎥⎥E2=⎡⎣⎢⎢⎢100010−501⎤⎦⎥⎥⎥E3=⎡⎣⎢⎢⎢1000−10001⎤⎦⎥⎥⎥E4=⎡⎣⎢⎢⎢001010100⎤⎦⎥⎥⎥ What is the determinant of A?arrow_forwardUse the graph of the function y = f(x) below to answer the questions. 4 3- 2+ 1 -5 -4 -3 -2 -1 3 -1+ -2+ -3+ -4- -5+ (a) Isf (3) negative? Yes No (b) For which value(s) of x is f(x) = 0? If there is more than one value, separate them with commas. (c) For which value(s) of x is f(x) ≤0? Write your answer using interval notation.arrow_forwardName: Date: Transformations of Quadratic Functions y=a(x-h)²+k Describe all transformations for each quadratic function. 1. 2. -2 2 -4 2 2arrow_forward
- 5:45 Done ⚫ myopenmath.com Oli Score on last try: 0 of 12 pts. See Details for more. > Next question You can retry this question. below 384 Draw a graph that models the connecting relationships in the floorplan below. The vertices represent the rooms and the edges represent doorways connecting the rooms. Vertex D represents the outdoors. D A B C Is it possible to find a path through the house that uses each doorway once? If so, enter the sequence of rooms(vertices) visited, for example ABCDA. If it is not possible, enter DNE. DCBACD Question Help: ☑Video 1 > Video 2 Submit Questionarrow_forwardUse the graph of the function y = f(x) below to answer the questions. У 5- 4- 3- 2+ 1- 4 -3 -2 -1 3 4 -N -2 -3- -4 -5- (a) Isf(1) positive? Yes No (b) For which value(s) of x is f(x) > 0? Write your answer using interval notation. (c) For which value(s) of x is f(x) = 0? If there is more than one value, separate them with commas. 0,0,... (0,0) (0,0) (0,0) (0,0) QUO 0arrow_forwardConsider the following Gauss elimination: What is the determinant of A ?arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





