Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = e x 1 − x
Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = e x 1 − x
Using
L'H
o
^
pital's
rule (Section 3.6) one can verify that
lim
x
→
+
∞
e
x
x
=
+
∞
,
lim
x
→
+
∞
x
e
x
=
0
,
lim
x
→
−
∞
x
e
x
=
0
In these exercises: (a) Use these results, as necessary, to find the limits of
f
x
as
x
→
+
∞
and as
x
→
−
∞
. (b) Sketch a graph of
f
x
and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
4. Use method of separation of variable to solve the following wave equation
მłu
J²u
subject to
u(0,t) =0, for t> 0,
u(л,t) = 0, for t> 0,
=
t> 0,
at²
ax²'
u(x, 0) = 0,
0.01 x,
ut(x, 0) =
Π
0.01 (π-x),
0
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY