MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43, Problem 43.6DQ
To determine
Whether there exist a similar consistency in the atomic energy of atoms, on an energy per electron basis as that in the binding energy per nucleon for a nucleus.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
if you started with a parent isotope with 100% of its atoms and its half-life is 10 years. What is the parent/daughter percentage (P/D %) after two (2) have lives?
a.
87.5%; 12.5%
b.
75%; 25%
c.
25%; 75%
d.
12.5%; 87.5%
56Fe is among the most tightly bound of all nuclides. It makes up more than 90% of natural iron. Note that 56Fe has an even number of both protons and neutrons.
Calculate BE/A, the binding energy per nucleon, for 56Fe in megaelectron volts per nucleon.
a) Derive an expression for the most stable element along a given isobar (an isobar is all nuclides with
same mass number A).
b) What does your expression predict for the A=89 isobar? Check your answer with the chart of the
nuclides.
Chapter 43 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 43.1 - Prob. 43.1TYUCh. 43.2 - Rank the following nuclei in order from largest to...Ch. 43.3 - Prob. 43.3TYUCh. 43.4 - Prob. 43.4TYUCh. 43.5 - Prob. 43.5TYUCh. 43.6 - Prob. 43.6TYUCh. 43.7 - Prob. 43.7TYUCh. 43.8 - Prob. 43.8TYUCh. 43 - Prob. 43.1DQCh. 43 - Prob. 43.2DQ
Ch. 43 - Prob. 43.3DQCh. 43 - Prob. 43.4DQCh. 43 - Prob. 43.5DQCh. 43 - Prob. 43.6DQCh. 43 - Prob. 43.7DQCh. 43 - Prob. 43.8DQCh. 43 - Prob. 43.9DQCh. 43 - Prob. 43.10DQCh. 43 - Prob. 43.11DQCh. 43 - Prob. 43.12DQCh. 43 - Prob. 43.13DQCh. 43 - Prob. 43.14DQCh. 43 - Prob. 43.15DQCh. 43 - Prob. 43.16DQCh. 43 - Prob. 43.17DQCh. 43 - The most common radium isotope found on earth,...Ch. 43 - Prob. 43.19DQCh. 43 - Prob. 43.20DQCh. 43 - Prob. 43.1ECh. 43 - Prob. 43.2ECh. 43 - Prob. 43.3ECh. 43 - Prob. 43.4ECh. 43 - Prob. 43.5ECh. 43 - Prob. 43.6ECh. 43 - Prob. 43.7ECh. 43 - Prob. 43.8ECh. 43 - Prob. 43.9ECh. 43 - Prob. 43.10ECh. 43 - Prob. 43.11ECh. 43 - Prob. 43.12ECh. 43 - Prob. 43.13ECh. 43 - Prob. 43.14ECh. 43 - Prob. 43.15ECh. 43 - Prob. 43.16ECh. 43 - Prob. 43.17ECh. 43 - Prob. 43.18ECh. 43 - Prob. 43.19ECh. 43 - Prob. 43.20ECh. 43 - Prob. 43.21ECh. 43 - Prob. 43.22ECh. 43 - Prob. 43.23ECh. 43 - Prob. 43.24ECh. 43 - Prob. 43.25ECh. 43 - Prob. 43.26ECh. 43 - Measurements on a certain isotope tell you that...Ch. 43 - Prob. 43.28ECh. 43 - Prob. 43.29ECh. 43 - Prob. 43.30ECh. 43 - Prob. 43.31ECh. 43 - Prob. 43.32ECh. 43 - Prob. 43.33ECh. 43 - Prob. 43.34ECh. 43 - Prob. 43.35ECh. 43 - Prob. 43.36ECh. 43 - Prob. 43.37ECh. 43 - Prob. 43.38ECh. 43 - Prob. 43.39ECh. 43 - Prob. 43.40ECh. 43 - Prob. 43.41ECh. 43 - Energy from Nuclear Fusion. Calculate the energy...Ch. 43 - Prob. 43.43ECh. 43 - Prob. 43.44ECh. 43 - Prob. 43.45ECh. 43 - Prob. 43.46ECh. 43 - Prob. 43.47PCh. 43 - Prob. 43.48PCh. 43 - Prob. 43.49PCh. 43 - Prob. 43.50PCh. 43 - Prob. 43.51PCh. 43 - Prob. 43.52PCh. 43 - Prob. 43.53PCh. 43 - Prob. 43.54PCh. 43 - Prob. 43.55PCh. 43 - Prob. 43.56PCh. 43 - Prob. 43.57PCh. 43 - Prob. 43.58PCh. 43 - Prob. 43.59PCh. 43 - Prob. 43.60PCh. 43 - Prob. 43.61PCh. 43 - Prob. 43.62PCh. 43 - Prob. 43.63PCh. 43 - Prob. 43.64PCh. 43 - Prob. 43.65PCh. 43 - Prob. 43.66PCh. 43 - Prob. 43.67PCh. 43 - Prob. 43.68PCh. 43 - DATA Your company develops radioactive isotopes...Ch. 43 - Prob. 43.70PCh. 43 - Prob. 43.71CPCh. 43 - Prob. 43.72CPCh. 43 - Prob. 43.73PPCh. 43 - Prob. 43.74PPCh. 43 - Prob. 43.75PPCh. 43 - Prob. 43.76PPCh. 43 - Prob. 43.77PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No stable nuclides exist that have Z greater than ___. (10.3)arrow_forwardTo obtain the most precise value of BE from the equation BE=[ZM(1H)+Nmn]c2m(AX)c2, we should take into account the binding energy of the electrons in the neutral atoms. Will doing this produce a larger or smaller value for BE? Why is this effect usually negligible?arrow_forward(a) Show that if you assume the average nucleus is spherical with a radius r=r0A1/3, and with a mass at A u, then its density is independent at A. (b) Calculate that density in u/fm3 and kg/m3, and compare your results with those found in Example 31.1 for 56Fe.arrow_forward
- 5arrow_forward56Fe is among the most tightly bound of all nuclides. It is more than 90% of natural iron. Note that 56Fe has even numbers of both protons and neutrons. Calculate BE/A, the binding energy per nucleon, for 56Fe and compare it with the approximate value obtained from the graph in Figure 31.26.arrow_forwardFe-56 is among the most tightly bound of all nuclides. It makes up more than 90% of natural iron. Note that Fe-56 has even numbers of protons and neutrons. Calculate the binding energy per nucleon (in MeV) for Fe-56. Answer in 2 decimal places.arrow_forward
- A radiation oncologist treats cancer with two species of radioactive nuclei, X and Y. The initial number of nuclei for each species (at t = 0) is No. At t = 100 s, the oncologist observes that Nx = 100 Ny. If tx = 2 Ty, the value of Tx (in s) is: (Recall that T = (1/2) and 1 Ci = 3.7 x 1010 Bq) 34.34 0.50 5.07 59.41 21.72arrow_forwardAaBbCcDd AaBbCcD. AaBbC AaBbCcC AaBbCcC AaBbCeD AaBbCcD AaB AaB 1 Caption Emphasis Heading 1 1 List Para. 1 Normal Strong Subtitle Title 1 No Paragraph 24. A radioactive element X decay to a radioactive element Y which then decay to an element Z. If initially there is only X, which of the following influences the ratio of the number of nuclides of Y to that of X? A. Type of Z C. The initial total of Y B. Half-life of Y D. Surrounding pressure 25. A metal rod of length L which is placed on two parallel conductors in a magnetic field B which is directed perpendicularly into the paper is shown in the diagram. B 7. Applied lish (United States) rch 30°C Light rainarrow_forwardA nucleus with even-even nucleons in the ground state is subjected to alpha decay. Calculate the allowed values of total angular momentum ??, parity ?? and hence allowed states of ???? of the daughter nucleusarrow_forward
- The liquid drop model may be used to determine the nuclear binding energy for an isotope. This model uses the semiempirical binding energy formula, which takes into consideration four major effects (one term per effect) that contribute to the nuclear binding energy. The semiempirical binding energy formula may be expressed as: Z(Z - 1) C3 A1/3 (N – z)2 E, = C;A – C,A?/3 A The first term is the volume term, the second is the surface term, the third is the Coulomb term, and the fourth is the symmetry term. For nuclei having A 2 15, the constants have the following values: = 15.7 MeV, C, = 17.8 MeV, C3 = 0.71 MeV, and C. = 23.6 MeV 56 (a) Use the semiempirical binding energy formula to determine the nuclear binding energy (in MeV) for the isotope Fe. 26 MeV (b) Determine the percentage contribution to the binding energy by each of the four terms. (You should expect positive and negative values, but the sum should be 100%. Due to the nature of this problem, do not use rounded intermediate…arrow_forwardShow that the neutron number for the following nuclides generally exceeds the atomic number for nuclei with atomic numbers greater than 20: krypton-84, lead-208, fluorine-19, sodium-22, platinum-179, and phosphorus-30. (Enter your answer in the form A/ZXN. Separate substances in a list with a comma.)arrow_forward[Nuclear Physics] Given the SEMF equation in the first imagearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning