A smokestack deposits soot on the ground with a concentration inversely proportional to the square of the distance from the stack. With two smokestacks 20miles apart, the concentration of the combined deposits on the line joining them, at a distance x from one stack, is given by S = k 1 x 2 + k 2 ( 20 − x ) 2 where k 1 and k 2 are positive constants which depend on the quantity of smoke each stack is emitting. If k 1 = 7 k 2 , find the point on the line joining the stacks where the concentration of the deposit is a minimum.
A smokestack deposits soot on the ground with a concentration inversely proportional to the square of the distance from the stack. With two smokestacks 20miles apart, the concentration of the combined deposits on the line joining them, at a distance x from one stack, is given by S = k 1 x 2 + k 2 ( 20 − x ) 2 where k 1 and k 2 are positive constants which depend on the quantity of smoke each stack is emitting. If k 1 = 7 k 2 , find the point on the line joining the stacks where the concentration of the deposit is a minimum.
A smokestack deposits soot on the ground with a concentration inversely proportional to the square of the distance from the stack. With two smokestacks 20miles apart, the concentration of the combined deposits on the line joining them, at a distance x from one stack, is given by
S
=
k
1
x
2
+
k
2
(
20
−
x
)
2
where k1 and k2 are positive constants which depend on the quantity of smoke each stack is emitting. If k1 = 7k2, find the point on the line joining the stacks where the concentration of the deposit is a minimum.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.