
Concept explainers
Introduction:
The epithelial cells in the gills of freshwater have a higher concentration of solutes than the surrounding water where fishes live, that is they are hyper-osmotic to the surrounding water.

Answer to Problem 2TYK
Correct answer:
In freshwater fishes, water enters epithelial cells in their gills via osmosis. Whereas, the electrolytes leave the same cells via diffusion.
Explanation of Solution
Explanation/justification for the correct answer:
Option (c) is given that water enters epithelial cells in the gills of freshwater fishes via osmosis and electrolytes leaves the same cells via diffusion. The freshwater fishes maintain the electrolyte balance (osmoregulation) with their external environment. This osmoregulation is maintained by the entry of freshwater into the epithelial cells of the gills through the process of osmosis.
In this, the transfer of solvent (water) from the region of less solute concentration (water body, for example, a freshwater river) to the region of higher solute concentration (epithelial cells in the gills) takes place. In order to maintain homeostasis, the excess water intake is excreted in the urine.
The excess solute (electrolytes) present in the epithelial cells leaves the cells via the process of diffusion. The level of lost electrolytes is maintained by food intake or through their active transport from the freshwater present outside. Hence, option (c) is correct.
Explanation for incorrect answer:
Option (a) is given that water surrounding the fish is iso-osmotic. As a result, no special organ is required to maintain water and electrolyte balance. So, it is a wrong answer.
Option (b) is given that freshwater fishes lose water to their environment primarily through the gills, and replace this water by drinking. The epithelial cells of freshwater fishes have less amount of water and they possess a higher solute concentration; therefore, they take in water by osmosis instead of losing it via gills. So, it is a wrong answer.
Option (d) is given that freshwater fishes have specialized epithelia that actively pump Na+ (sodium ions) and Cl- (chloride ions) from the blood into their environment. The specialized epithelia in the gills help to actively pump in the electrolytes (sodium ions and chloride ions) from the outside environment to maintain the levels of electrolyte, which were lost due to diffusion. So, it is a wrong answer.
Hence, options (a), (b), and (d) are incorrect.
Therefore, it can be concluded that the concentration of solute in the epithelial cells of the gills of freshwater fishes is higher than in the water outside. The osmoregulation is maintained by osmosis (water enters the epithelial cells) and diffusion (water leaves the cells). Thus, the water enters epithelial cells in the gills of freshwater fishes via osmosis and the electrolytes leave those cells through diffusion.
Want to see more full solutions like this?
Chapter 43 Solutions
Biological Science
- Give examples of fat soluble and non-fat soluble hormonesarrow_forwardJust click view full document and register so you can see the whole document. how do i access this. following from the previous question; https://www.bartleby.com/questions-and-answers/hi-hi-with-this-unit-assessment-psy4406-tp4-report-assessment-material-case-stydu-ms-alecia-moore.-o/5e09906a-5101-4297-a8f7-49449b0bb5a7. on Google this image comes up and i have signed/ payed for the service and unable to access the full document. are you able to copy and past to this response. please see the screenshot from google page. unfortunality its not allowing me attch the image can you please show me the mathmetic calculation/ workout for the reult sectionarrow_forwardIn tabular form, differentiate between reversible and irreversible cell injury.arrow_forward
- 1.)What cross will result in half homozygous dominant offspring and half heterozygous offspring? 2.) What cross will result in all heterozygous offspring?arrow_forward1.Steroids like testosterone and estrogen are nonpolar and large (~18 carbons). Steroids diffuse through membranes without transporters. Compare and contrast the remaining substances and circle the three substances that can diffuse through a membrane the fastest, without a transporter. Put a square around the other substance that can also diffuse through a membrane (1000x slower but also without a transporter). Molecule Steroid H+ CO₂ Glucose (C6H12O6) H₂O Na+ N₂ Size (Small/Big) Big Nonpolar/Polar/ Nonpolar lonizedarrow_forwardwhat are the answer from the bookarrow_forward
- what is lung cancer why plants removes liquid water intead water vapoursarrow_forward*Example 2: Tracing the path of an autosomal dominant trait Trait: Neurofibromatosis Forms of the trait: The dominant form is neurofibromatosis, caused by the production of an abnormal form of the protein neurofibromin. Affected individuals show spots of abnormal skin pigmentation and non-cancerous tumors that can interfere with the nervous system and cause blindness. Some tumors can convert to a cancerous form. i The recessive form is a normal protein - in other words, no neurofibromatosis.moovi A typical pedigree for a family that carries neurofibromatosis is shown below. Note that carriers are not indicated with half-colored shapes in this chart. Use the letter "N" to indicate the dominant neurofibromatosis allele, and the letter "n" for the normal allele. Nn nn nn 2 nn Nn A 3 N-arrow_forwardI want to be a super nutrition guy what u guys like recommend mearrow_forward
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningAnatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning




