In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. y ' ' + 2 y ' − 3 y = 0
In each of Problems 1 through 26: (a) Find the general solution in terms of real functions. (b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type. (c) Use the general solution obtained in part (a) to find a two parameter family of trajectories X = x 1 i + x 2 j = y i + y ' j of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories. y ' ' + 2 y ' − 3 y = 0
(a) Find the general solution in terms of real functions.
(b) From the roots of the characteristics equation, determine whether each critical point of the corresponding dynamical system is asymptotically stable, stable, or unstable, and classify it as to type.
(c) Use the general solution obtained in part (a) to find a two parameter family of trajectories
X
=
x
1
i
+
x
2
j
=
y
i
+
y
'
j
of the corresponding dynamical system. Then sketch by hand, or use a computer, to draw a phase portrait, including any straight-line orbits, from this family of trajectories.
Please provide the solution for the attached image in detailed.
5
Obtain by multiplying matrices the composite coordinate transformation of two transformations, first
x' = (x + y√2+ z)/2
followed by
y' =
(x√√2-2√2)/2
z' = (-x+y√2-2)/2
x"
=
y"
2"
=
(x'√√2+2'√√2)/2
(-x'y'√√2+)/2
(x'y' √√2-z)/2.
20 km, because
GISS
Worksheet 10
Jesse runs a small business selling and delivering mealie meal to the spaza shops.
He charges a fixed rate of R80, 00 for delivery and then R15, 50 for each packet of
mealle meal he delivers. The table below helps him to calculate what to charge
his customers.
10
20
30
40
50
Packets of mealie
meal (m)
Total costs in Rands
80
235
390
545
700
855
(c)
10.1.
Define the following terms:
10.1.1. Independent Variables
10.1.2. Dependent Variables
10.2.
10.3.
10.4.
10.5.
Determine the independent and dependent variables.
Are the variables in this scenario discrete or continuous values? Explain
What shape do you expect the graph to be? Why?
Draw a graph on the graph provided to represent the information in the
table above.
TOTAL COST OF PACKETS OF MEALIE MEAL
900
800
700
600
COST (R)
500
400
300
200
100
0
10
20
30
40
60
NUMBER OF PACKETS OF MEALIE MEAL
Chapter 4 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.