Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
12th Edition
ISBN: 9781259587399
Author: Eugene Hecht
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 43, Problem 18SP
To determine
The energy pumped into thehydrogen atom to raise it from ground state to the second excited stateby using the figure 43-1.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state?
in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant.
in K
(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state?in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant.
in K
v) A hydrogen atom makes a transition from a bound state (Energy of the bound
state = 0.32 eV) to a state with excitation energy (= 10.2 eV). Calculate the
energy of the photon emitted.
Chapter 43 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (i) In hydrogen atom, an electron undergoes transition from 2nd excited state to the first excited state and then to the ground state. Identify the spectral series to which these transitions belong. (ii) Find out the ratio of the wavelengths of the emitted radiations in the two cases.arrow_forwardWhy is the following situation impossible? An experiment is performed on an atom. Measurements of the atom when it is in a particular excited state show five possible values of the z component of orbital angular momentum, ranging between 3.16 x 10-34 kg ⋅ m2/s and -3.16 x 10-34 kg ⋅ m2/s.arrow_forwardThe magnitude of the orbital angular momentum in an excited state of hydrogen is 6.84 × 10-34 J ·s and the z com- ponent is 2.11 x 10-3ª J ·s. What are all the possible values of n, l, and mẹ for this state?arrow_forward
- (a) The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ... to the ground state n = 1. The energy levels are given by 13.60 eV En n- (i) What is the second longest wavelength in nm of the Lyman series? (ii) What is the series limit of the Lyman series? [1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s] %3D Two emission lines have wavelengts A and + A2, respectively, where AA <<2. Show that the angular separation A0 in a grating spectrometer is given aproximately by (b) A0 = V(d/m)-2 where d is the grating constant and m is the order at which the lines are observed.arrow_forwardThe hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?arrow_forwardA hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forward
- The energy of an electron in a hydrogen atom is -4.45 x 10-20 J. What energy level (n) does it occupy? Is there another valid energy level at -2.69 x 10-20 J? If so, what is this other energy level?arrow_forwardDetermine the integral | P(r) dr for the radial probability density for the ground state of the hydrogen atom 4 P(r) = - r²e-2rla a³ O 1 O-1 O 0.5arrow_forward3. Starting from a thermal energy of phonon in the integral form 3π nD U = - ³7 for ( - II) n² dn hwn [exp(ħwn/t) − 1]) 2 where Debye number n = (6N/π)¹/³, find out the high temperature limit of the thermal energy (= 3NT) and heat capacity (= 3N) of phonon. Iarrow_forward
- Angular momentum and Spin. An electron in an H-atom has orbital angular momentum magnitude and z-component given by L² = 1(1+1)ħ², Lz = m₁h, 1 = 0,1,2,..., n 1 - m₁ = 0, ±1, ±2, ..., ±l 3 S² = s(s+1) h² = =h²₁ 4 Consider an excited electron (n > 1) on an H-atom. The total angular momentum ] = L + Š, whose magnitude and z-component follow a similar dependence to some quantum numbers j and m; as J² = j(j + 1)ħ², Jz = mjħ 1 S₂ = m₂h = ± = h Where j and m; are quantum numbers which assume values that jumps in steps of one such that j is non-negative and −j ≤ m¡ ≤ j. For a given quantum number 1, what are the (two) possible values for j? Clue: we can use the vector sum relation of angular momenta, then consider the z-component only.arrow_forwardAt what radius in the H atom does the radial distribution function of the ground state have (i) 50 per cent, (ii) 75 per cent of its maximum value?arrow_forwardDetermine the energy and frequency of the radiation emitted when an electron falls from n = 4 to n = 2 in a hydrogen atom. [Take m = 9.1×10−31kg, εo=8.85×10−12C2./Nm9.1×10−31kg, ?o=8.85×10−12C2./Nm ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning