Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 42, Problem 8P
To determine
The change in the wavelength of the characteristic x-rays when the energy of the electrons stricking the target is increased.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As per Bohr model of a hydrogen atom for a stable orbit centripetal, Coulomb, and all forces
should be in equilibrium. Therefore, for an electron with mass me and speed v₁ on the nth orbit
with radius rn, (k being Coulomb/s constant)
mevn = ke²/rn
mevn² = ke²/rn
mevn²/rn = ke²/rn
2.2
Ome²v² = ke²/r²
The velocity of electron in the first
Bohr orbit of radius 0.5 A.U. is 2.24 x 106 m/s.
Calculate the period of revolution of the
electron in the same orbit.
If the angular momentum of an electron atom of
hydrogen is equal to 34- ^ 10 × 3.15 j.s, in what orbit
is this electron located? And what is his energy.
Chapter 42 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 42.3 - Prob. 42.1QQCh. 42.3 - Prob. 42.2QQCh. 42.4 - Prob. 42.3QQCh. 42.4 - Prob. 42.4QQCh. 42.8 - Prob. 42.5QQCh. 42 - Prob. 1OQCh. 42 - Prob. 2OQCh. 42 - Prob. 3OQCh. 42 - Prob. 4OQCh. 42 - Prob. 5OQ
Ch. 42 - Prob. 6OQCh. 42 - Prob. 7OQCh. 42 - Prob. 8OQCh. 42 - Prob. 9OQCh. 42 - Prob. 10OQCh. 42 - Prob. 11OQCh. 42 - Prob. 12OQCh. 42 - Prob. 13OQCh. 42 - Prob. 14OQCh. 42 - Prob. 15OQCh. 42 - Prob. 1CQCh. 42 - Prob. 2CQCh. 42 - Prob. 3CQCh. 42 - Prob. 4CQCh. 42 - Prob. 5CQCh. 42 - Prob. 6CQCh. 42 - Prob. 7CQCh. 42 - Prob. 8CQCh. 42 - Prob. 9CQCh. 42 - Prob. 10CQCh. 42 - Prob. 11CQCh. 42 - Prob. 12CQCh. 42 - Prob. 1PCh. 42 - Prob. 2PCh. 42 - Prob. 3PCh. 42 - Prob. 4PCh. 42 - Prob. 5PCh. 42 - Prob. 6PCh. 42 - Prob. 7PCh. 42 - Prob. 8PCh. 42 - Prob. 9PCh. 42 - Prob. 10PCh. 42 - Prob. 11PCh. 42 - Prob. 12PCh. 42 - Prob. 13PCh. 42 - Prob. 14PCh. 42 - Prob. 15PCh. 42 - Prob. 16PCh. 42 - Prob. 17PCh. 42 - Prob. 18PCh. 42 - Prob. 19PCh. 42 - Prob. 20PCh. 42 - Prob. 21PCh. 42 - Prob. 23PCh. 42 - Prob. 24PCh. 42 - Prob. 25PCh. 42 - Prob. 26PCh. 42 - Prob. 27PCh. 42 - Prob. 28PCh. 42 - Prob. 29PCh. 42 - Prob. 30PCh. 42 - Prob. 31PCh. 42 - Prob. 32PCh. 42 - Prob. 33PCh. 42 - Prob. 34PCh. 42 - Prob. 35PCh. 42 - Prob. 36PCh. 42 - Prob. 37PCh. 42 - Prob. 38PCh. 42 - Prob. 39PCh. 42 - Prob. 40PCh. 42 - Prob. 41PCh. 42 - Prob. 43PCh. 42 - Prob. 44PCh. 42 - Prob. 45PCh. 42 - Prob. 46PCh. 42 - Prob. 47PCh. 42 - Prob. 48PCh. 42 - Prob. 49PCh. 42 - Prob. 50PCh. 42 - Prob. 51PCh. 42 - Prob. 52PCh. 42 - Prob. 53PCh. 42 - Prob. 54PCh. 42 - Prob. 55PCh. 42 - Prob. 56PCh. 42 - Prob. 57PCh. 42 - Prob. 58PCh. 42 - Prob. 59PCh. 42 - Prob. 60PCh. 42 - Prob. 61PCh. 42 - Prob. 62PCh. 42 - Prob. 63PCh. 42 - Prob. 64PCh. 42 - Prob. 65APCh. 42 - Prob. 66APCh. 42 - Prob. 67APCh. 42 - Prob. 68APCh. 42 - Prob. 69APCh. 42 - Prob. 70APCh. 42 - Prob. 71APCh. 42 - Prob. 72APCh. 42 - Prob. 73APCh. 42 - Prob. 74APCh. 42 - Prob. 75APCh. 42 - Prob. 76APCh. 42 - Prob. 77APCh. 42 - Prob. 78APCh. 42 - Prob. 79APCh. 42 - Prob. 80APCh. 42 - Prob. 81APCh. 42 - Prob. 82APCh. 42 - Prob. 83APCh. 42 - Prob. 84APCh. 42 - Prob. 85APCh. 42 - Prob. 86APCh. 42 - Prob. 87APCh. 42 - Prob. 88APCh. 42 - Prob. 89CPCh. 42 - Prob. 90CPCh. 42 - Prob. 91CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the speed of the electron in the nth Bohr orbit in hydrogen is given byarrow_forwardShow that the speed of the electron in the nth Bohr orbit in hydrogen is given by υn = (kee2)/(nh)arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forward
- In hydrogen atoms the energy of the electron in the first Bohr orbit is – 1312 × 105 J mol–1. Determine the energy required for the excitation to the second Bohr orbit.arrow_forwardSo Determine the distance between the electron and proton in an atom if the potential energy ?U of the electron is 15.4 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m)arrow_forwardA particular Bohr orbit in a hydrogen atom has a total energy of-0.85 eV. What are (a) the kinetic energy of the electron in thisorbit and (b) the electric potential energy of the system?arrow_forward
- (a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 × 108 m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) kg. m²/s 2.889e34 (b) If the angular momentum of the moon obeys Bohr's quantization rule (L: nh) determine the value of the quantum number, n. 2.7395e68 (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 1.825e-69 X Your response differs from the correct answer by more than 10%. Double check your calculations.arrow_forward(a) Calculate the angular momentum of the Moon due to its orbital motion about Earth. In your calculation use 3.84 x 10⁰ m as the average Earth- Moon distance and 2.36 × 106 s as the period of the Moon in its orbit. (Use 7.36 × 1022 kg for the mass of the moon.) 2.889e34 kg. m²/s (b) If the angular momentum of the moon obeys Bohr's quantization rule (L = nħ) determine the value of the quantum number, n. 8.463e67 Your response differs from the correct answer by more than 10%. Double check your calculations. (c) By what fraction would the Earth-Moon radius have to be increased to increase the quantum number by 1? 2.3632e-6 X Your response differs from the correct answer by more than 100%.arrow_forwardCalculate the speed (in m/s) and radial acceleration (in m/s²) for a ground-state electron in the hydrogen atom. Do the same for the He ion and the Li++ ion. (Enter the magnitudes.) hydrogen atom speed radial acceleration He+ ion speed radial acceleration Li++ ion speed m/s m/s² m/s m/s² m/s radial acceleration m/s²arrow_forward
- 13.10 If the radial momentum p, and radial velocity a, for an electron in a central potential are defined by r.p-ih a.r Pr = Xr= " r r show that ihk Ba, (ap) = ar Pr + r B(o'. L + h) where k = ħarrow_forwardIf the speed of the electron in Example 19-4 were 7.3 * 105m>s,what would be the corresponding orbital radius?arrow_forwardThe electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the z-component of the angular momentum of this electron? For accuracy, use h=6.626×10−34 J⋅s. find Number Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning