Concept explainers
(a)
Show that the frequency of the light emitted when electron moves from
(a)
Answer to Problem 91CP
It is shown that the frequency of the light emitted when electron moves from
Explanation of Solution
Write the expression for the allowed energies of an atom.
Here,
Write the expression for Bohr radius.
Here,
Use expression (II) in (I).
Here the transition of electron takes place from
Write the expression for the energy released during a transition from
Here,
Use expression (III) to find the energy released during a transition from
Simplify expression (V).
Equate expression (VI) and (IV) and solve for
Conclusion:
Therefore, it is shown that the frequency of the light emitted when electron moves from
(b)
Show that when
(b)
Answer to Problem 91CP
It is shown that when
Explanation of Solution
Write the expression for the
When
Write the expression for the classical frequency of electron.
Here,
Write the expression for velocity of electron.
Here,
Use expression (X) in (IX).
Rewrite expression (XI) in terms of the radius of the
Here,
Write the expression for the radius of the
Here,
Use expression (XIII) in (XII) and solve for
The classical frequency of the electron undergoing a transition from
That is it is proven that as the value of
Conclusion:
Therefore, it is shown that when
Want to see more full solutions like this?
Chapter 42 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill