
Linear Algebra with Applications (2-Download)
5th Edition
ISBN: 9780321796974
Author: Otto Bretscher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.2, Problem 62E
Find the image and kernel of the transformation T in Exercise 48.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5) For each function represented by an equation, make a table and plot the corresponding
points to sketch the graph of the function.
(a) y = 75 ()*
220
X
y
200-
-2
180
160
-1
140
0
120
100
1
60
80
2
3
4
x
(b) y = 20 ()*
1
60
40
20
20
0
2
3
65-
-1
X
y
60
-2
55-
50
45
44
40
0
35-
30
1
25
2
20
20
15
3
10
5
LO
4
3-2
T
-1
0
5-
4-
-3-
2-
A system of inequalities is shown.
y
5
3
2
1
X
-5
-4
-3
-2
-1
0
1
2
3
4
5
-1-
Which system is represented in the graph?
Oy>-x²-x+1
y 2x²+3
-2
-3
т
Which set of systems of equations represents the solution to the graph?
-5
-4
-3
-2
Of(x) = x² + 2x + 1
g(x) = x²+1
f(x) = x²+2x+1
g(x) = x²-1
f(x) = −x² + 2x + 1
g(x) = x²+1
f(x) = x² + 2x + 1
g(x) = x²-1
-1
5 y
4
3
2
1
0
-1-
-2
-3-
-4.
-5
1
2
3
4
5
Chapter 4 Solutions
Linear Algebra with Applications (2-Download)
Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...
Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 31ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 33ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - If c is any vector in n , what are the possible...Ch. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - In the linear space of infinite sequences,...Ch. 4.1 - A function f(t) from to is called even if...Ch. 4.1 - Prob. 48ECh. 4.1 - Let L(m,n) be the set of all linear...Ch. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Make up a second-order linear DE whose solution...Ch. 4.1 - Show that in an n-dimensional linear space we can...Ch. 4.1 - Show that if W is a subspace of an n-dimensional...Ch. 4.1 - Show that the space F(,) of all functions from to...Ch. 4.1 - Show that the space of infinite sequences of real...Ch. 4.1 - We say that a linear space V is finitely generated...Ch. 4.1 - In this exercise we will show that the functions...Ch. 4.1 - Show that if 0 is the neutral element of a linear...Ch. 4.1 - Consider the sequence (f0,f1,f2) recursively...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 15ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 21ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 35ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 41ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 46ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the kernel and nullity of the transformation...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - For the transformation T in Exercise 23, find the...Ch. 4.2 - For the transformation T in Exercise 42, find the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Define an isomorphism from P3 to 3 , if you can.Ch. 4.2 - Define an isomorphism from P3 to 22 , if you can.Ch. 4.2 - We will define a transformation T from nm to...Ch. 4.2 - Find the kernel and nullity of the linear...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - If matrix A is similar to B, is T(M)=AMMB an...Ch. 4.2 - For which real numbers co, c0,c1,...,cn is the...Ch. 4.2 - Prob. 71ECh. 4.2 - Prob. 72ECh. 4.2 - Prob. 73ECh. 4.2 - In Exercises 72 through 74, let Znbe the set of...Ch. 4.2 - Prob. 75ECh. 4.2 - Prob. 76ECh. 4.2 - Prob. 77ECh. 4.2 - Let + be the set of positive real numbers. On + we...Ch. 4.2 - Prob. 79ECh. 4.2 - Prob. 80ECh. 4.2 - Prob. 81ECh. 4.2 - Prob. 82ECh. 4.2 - Consider linear transformations T from V to W and...Ch. 4.2 - Prob. 84ECh. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - Do the polynomials...Ch. 4.3 - Consider the polynomials f(t)=t+1 and...Ch. 4.3 - Prob. 5ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 21ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 32ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 45ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - In Exercises 48 through 53, let V be the space...Ch. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - In Exercises 54 through 58, let V be the plane...Ch. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Consider a linear transformation T from V to V...Ch. 4.3 - In the plane V defined by the equation 2x1+x22x3=0...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Let V be the space of all upper triangular 22...Ch. 4.3 - Let V be the subspace of 22 spanned by the...Ch. 4.3 - Prob. 66ECh. 4.3 - Let V be the linear space of all functions of the...Ch. 4.3 - Consider the linear space V of all infinite...Ch. 4.3 - Consider a basis f1,...,fn , of Pn1.Let a1,...,an...Ch. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - In all parts of this problem, let V be the set of...Ch. 4.3 - Prob. 73ECh. 4 - The polynomials of degree less than 7 form a seven...Ch. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - The space 23 is five-dimensional.Ch. 4 - Prob. 6ECh. 4 - Prob. 7ECh. 4 - Prob. 8ECh. 4 - If W1 and W2 are subspaces of a linear space V,...Ch. 4 - If T is a linear transformation from P6 to 22 ,...Ch. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - All linear transformations from P3 to 22 are...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - Prob. 16ECh. 4 - Every polynomial of degree 3 can be expressed as a...Ch. 4 - a linear space V can be spanned by 10 elements,...Ch. 4 - Prob. 19ECh. 4 - There exists a 22 matrix A such that the space V...Ch. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - If W is a subspace of V, and if W is finite...Ch. 4 - Prob. 32ECh. 4 - Prob. 33ECh. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - The transformation D(f)=f from C to C is an...Ch. 4 - If T is a linear transformation from P4 to W with...Ch. 4 - The kernel of the linear transformation...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - If T is a linear transformation from P6 to P6 that...Ch. 4 - There exist invertible 22 matrices P and Q such...Ch. 4 - There exists a linear transformation from P6 to ...Ch. 4 - If f1,f2,f3 is a basis of a linear space V, and if...Ch. 4 - There exists a two-dimensional subspace of 22...Ch. 4 - The space P11 is isomorphic to 34 .Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If T is a linear transformation from V to 22 with...Ch. 4 - The function T(f(t))=ddt23t+4f(x)dx from P5 to P5...Ch. 4 - Any four-dimensional linear space has infinitely...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - If the image of a linear transformation T is...Ch. 4 - There exists a 22 matrix A such that the space of...Ch. 4 - If A, B, C, and D are noninvertible 22 matrices,...Ch. 4 - There exist two distinct three-dimensional...Ch. 4 - the elements f1,...,fn , (where f10 ) are linearly...Ch. 4 - There exists a 33 matrix P such that the linear...Ch. 4 - If f1,f2,f3,f4,f5 are elements of a linear space...Ch. 4 - There exists a linear transformation T from P6 to...Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - Every three-dimensional subspace of 22 contains at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Which of the graphs below correctly solves for x in the equation -x² - 3x-1=-x-4? о 10 8 (0,2) -10 -8 -6 -2 2 4 6 8 10 (-4,-2) -2 + (0,2) (4,6) -10-8-6-4-2 -2 2 4 6 8 10 (-3, -1) -2 2 (1-5) -6 -8 -10 10 -10-8-6-4-2 2 6 8 10 (2,0)arrow_forward1) Express these large and small numbers from the Read and Study section in scientific notation: (a) 239,000 miles (b) 3,800,000,000,000 sheets of paper (c) 0.0000000000000000000000167 grams 2) Find all values for the variable x that make these equations true. (a) 5x = 1 (b) 3x = 1/1 9 (c) 4* = 11/ 4 (e) 4* = 64 (g) 10x = 1,000,000 (d) 3x=-3 (f) 2x = = 8 (h) 10x = 0.001arrow_forward(b) 4) Find an equation to fit each of the following graphs: (a) 20 20 18 16 14 12 10 8 6 4 2 24 22 20 18 16 14 12 10 8 16 A 2 -3 -2 -1-0 2 3 4. -1 0 1 2 3. -2 -2arrow_forward
- 3) Which of the following are equivalent to 3? (There may be more than one that is equivalent!) -1 (a) (9)¯¹ 3. (b) (-3)-1 (c) (-3) -1 (d) -(¯3) (e) 11 3-1 (f) 3-4arrow_forwardY- ___b=_____ (X- )arrow_forwardFind the Laplace Transform of the function to express it in frequency domain form.arrow_forward
- Please draw a graph that represents the system of equations f(x) = x2 + 2x + 2 and g(x) = –x2 + 2x + 4?arrow_forwardGiven the following system of equations and its graph below, what can be determined about the slopes and y-intercepts of the system of equations? 7 y 6 5 4 3 2 -6-5-4-3-2-1 1+ -2 1 2 3 4 5 6 x + 2y = 8 2x + 4y = 12 The slopes are different, and the y-intercepts are different. The slopes are different, and the y-intercepts are the same. The slopes are the same, and the y-intercepts are different. O The slopes are the same, and the y-intercepts are the same.arrow_forwardChoose the function to match the graph. -2- 0 -7 -8 -9 --10- |--11- -12- f(x) = log x + 5 f(x) = log x - 5 f(x) = log (x+5) f(x) = log (x-5) 9 10 11 12 13 14arrow_forward
- Which of the following represents the graph of f(x)=3x-2? 7 6 5 4 ++ + + -7-6-5-4-3-2-1 1 2 3 4 5 6 7 -2 3 -5 6 -7 96 7 5 4 O++ -7-6-5-4-3-2-1 -2 -3 -4 -5 -7 765 432 -7-6-5-4-3-2-1 -2 ++ -3 -4 -5 -6 2 3 4 5 6 7 7 6 2 345 67 -7-6-5-4-3-2-1 2 3 4 5 67 4 -5arrow_forward13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of the following sets and the cardinal number of each set. a) W° and n(W) b) (VUW) and n((V U W)') c) VUWUX and n(V U W UX) d) vnWnX and n(V WnX)arrow_forward9) Use the Venn Diagram given below to determine the number elements in each of the following sets. a) n(A). b) n(A° UBC). U B oh a k gy ท W z r e t ་ Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY