
Linear Algebra with Applications (2-Download)
5th Edition
ISBN: 9780321796974
Author: Otto Bretscher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.2, Problem 52E
To determine
To find:The kernel and nullity of the transformationTgiven by
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Last Chance Mine (LCM) purchased a coal deposit for $2,918,300. It estimated it would extract 18,950 tons of coal from the
deposit. LCM mined the coal and sold it, reporting gross receipts of $1.24 million, $13 million, and $11 million for years 1
through 3, respectively. During years 1-3, LCM reported net income (loss) from the coal deposit activity in the amount of
($11,400), $550,000, and $502,500, respectively. In years 1-3, LCM extracted 19,950 tons of coal as follows:
(1) Tons of
Coal
18,950
Depletion
(2) Basis (2)(1) Rate
$2,918,300 $154.00
Tons Extracted per Year
Year 1
4,500
Year 2
8,850
Year 3
6,600
Note: Leave no answer blank. Enter zero if applicable. Enter your answers in dollars and not in millions of dollars.
a. What is LCM's cost depletion for years 1, 2, and 3?
Cost Depletion
Year 1
Year 2
Year 3
Consider the following equation.
log1/9'
=6
Find the value of x.
Round your answer to the nearest thousandth.
x =
✓
Expanding a logarithmic expression: Problem type 3
Use the properties of logarithms to expand the following expression.
4(8+x)²
log
5
)
Your answer should not have radicals or exponents.
You may assume that all variables are positive.
log
4(8 +
X
5
-x)²
Chapter 4 Solutions
Linear Algebra with Applications (2-Download)
Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...
Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 31ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 33ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - If c is any vector in n , what are the possible...Ch. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - In the linear space of infinite sequences,...Ch. 4.1 - A function f(t) from to is called even if...Ch. 4.1 - Prob. 48ECh. 4.1 - Let L(m,n) be the set of all linear...Ch. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Make up a second-order linear DE whose solution...Ch. 4.1 - Show that in an n-dimensional linear space we can...Ch. 4.1 - Show that if W is a subspace of an n-dimensional...Ch. 4.1 - Show that the space F(,) of all functions from to...Ch. 4.1 - Show that the space of infinite sequences of real...Ch. 4.1 - We say that a linear space V is finitely generated...Ch. 4.1 - In this exercise we will show that the functions...Ch. 4.1 - Show that if 0 is the neutral element of a linear...Ch. 4.1 - Consider the sequence (f0,f1,f2) recursively...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 15ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 21ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 35ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 41ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 46ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the kernel and nullity of the transformation...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - For the transformation T in Exercise 23, find the...Ch. 4.2 - For the transformation T in Exercise 42, find the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Define an isomorphism from P3 to 3 , if you can.Ch. 4.2 - Define an isomorphism from P3 to 22 , if you can.Ch. 4.2 - We will define a transformation T from nm to...Ch. 4.2 - Find the kernel and nullity of the linear...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - If matrix A is similar to B, is T(M)=AMMB an...Ch. 4.2 - For which real numbers co, c0,c1,...,cn is the...Ch. 4.2 - Prob. 71ECh. 4.2 - Prob. 72ECh. 4.2 - Prob. 73ECh. 4.2 - In Exercises 72 through 74, let Znbe the set of...Ch. 4.2 - Prob. 75ECh. 4.2 - Prob. 76ECh. 4.2 - Prob. 77ECh. 4.2 - Let + be the set of positive real numbers. On + we...Ch. 4.2 - Prob. 79ECh. 4.2 - Prob. 80ECh. 4.2 - Prob. 81ECh. 4.2 - Prob. 82ECh. 4.2 - Consider linear transformations T from V to W and...Ch. 4.2 - Prob. 84ECh. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - Do the polynomials...Ch. 4.3 - Consider the polynomials f(t)=t+1 and...Ch. 4.3 - Prob. 5ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 21ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 32ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 45ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - In Exercises 48 through 53, let V be the space...Ch. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - In Exercises 54 through 58, let V be the plane...Ch. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Consider a linear transformation T from V to V...Ch. 4.3 - In the plane V defined by the equation 2x1+x22x3=0...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Let V be the space of all upper triangular 22...Ch. 4.3 - Let V be the subspace of 22 spanned by the...Ch. 4.3 - Prob. 66ECh. 4.3 - Let V be the linear space of all functions of the...Ch. 4.3 - Consider the linear space V of all infinite...Ch. 4.3 - Consider a basis f1,...,fn , of Pn1.Let a1,...,an...Ch. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - In all parts of this problem, let V be the set of...Ch. 4.3 - Prob. 73ECh. 4 - The polynomials of degree less than 7 form a seven...Ch. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - The space 23 is five-dimensional.Ch. 4 - Prob. 6ECh. 4 - Prob. 7ECh. 4 - Prob. 8ECh. 4 - If W1 and W2 are subspaces of a linear space V,...Ch. 4 - If T is a linear transformation from P6 to 22 ,...Ch. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - All linear transformations from P3 to 22 are...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - Prob. 16ECh. 4 - Every polynomial of degree 3 can be expressed as a...Ch. 4 - a linear space V can be spanned by 10 elements,...Ch. 4 - Prob. 19ECh. 4 - There exists a 22 matrix A such that the space V...Ch. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - If W is a subspace of V, and if W is finite...Ch. 4 - Prob. 32ECh. 4 - Prob. 33ECh. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - The transformation D(f)=f from C to C is an...Ch. 4 - If T is a linear transformation from P4 to W with...Ch. 4 - The kernel of the linear transformation...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - If T is a linear transformation from P6 to P6 that...Ch. 4 - There exist invertible 22 matrices P and Q such...Ch. 4 - There exists a linear transformation from P6 to ...Ch. 4 - If f1,f2,f3 is a basis of a linear space V, and if...Ch. 4 - There exists a two-dimensional subspace of 22...Ch. 4 - The space P11 is isomorphic to 34 .Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If T is a linear transformation from V to 22 with...Ch. 4 - The function T(f(t))=ddt23t+4f(x)dx from P5 to P5...Ch. 4 - Any four-dimensional linear space has infinitely...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - If the image of a linear transformation T is...Ch. 4 - There exists a 22 matrix A such that the space of...Ch. 4 - If A, B, C, and D are noninvertible 22 matrices,...Ch. 4 - There exist two distinct three-dimensional...Ch. 4 - the elements f1,...,fn , (where f10 ) are linearly...Ch. 4 - There exists a 33 matrix P such that the linear...Ch. 4 - If f1,f2,f3,f4,f5 are elements of a linear space...Ch. 4 - There exists a linear transformation T from P6 to...Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - Every three-dimensional subspace of 22 contains at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Use the properties of logarithms to expand the following expression. log 6(x+5)² 3/24 Your answer should not have radicals or exponents. You may assume that all variables are positive. log 6(x + 3 I 4 5)² log Xarrow_forwardDone וון Exponential and Logarithmic Functions Expanding a logarithmic expression: Problem type 2 www-awy.aleks.com Use the properties of logarithms to expand the following expression. 3 log yz 5 x 0/3 Anthony Each logarithm should involve only one variable and should not have any radicals or exponents. You may assume that all variables are positive. log yz x 5 3 = Explanation Check log Español Aa ☑ © ZUZI MILOT AW MIII LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardExpanding a logarithmic expression: Problem type 2 Use the properties of logarithms to expand the following expression. 3 yz log 5 x 0/3 An Each logarithm should involve only one variable and should not have any radicals or exponents. You may assume that all variables are positive. log yz 3 厚 5 Explanation Check log ☑ 2025 MG ¿W MIII LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Expanding a logarithmic expression: Problem type 2 Use the properties of logarithms to expand the following expression. 3 yz log 5 x 0/3 An Each logarithm should involve only one variable and should not have any radicals or exponents. You may assume that all variables are positive. log yz 3 厚 5 Explanation Check log ☑ 2025 MG ¿W MIII LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardWhat is the domain and range, thank you !!arrow_forwardAssume a bivariate patch p(u, v) over the unit square [0, 1]² that is given as a tensor product patch where u-sections (u fixed to some constant û; v varying across [0, 1]) are quadratic polynomials Pu:û(v) = p(û, v) while v-sections are lines pv:ô (u) = p(u, v). The boundary lines pv:o(u) and pv:1 (u) are specified by their end points p(0,0) 0.8 and p(1,0) 0.2 as well as p(0, 1) 0.3 and p(1, 1) = 0.8. The boundary quadratics pu:o(v) and pu:1 (v) interpolate p(0,0.5) = 0.1 and p(1, 0.5) = 0.9 in addition to the above given four corner-values. = = = Use Pu:û(v) = (1, v, v² ) Mq (Pu:û(0), Pu:û (0.5), Pu:û(1)) with Ma = 1 0 0 -3 4-1 2 4 2 (Pv:ô as well as pu: (u) = (1, u) M₁ (pv:v (0), P: (1)) with M₁ = = (19) 0 to formulate p(u, v) using the "geometric input" G with G = = (P(0,0%) p(0,0) p(0,0.5) p(0,1) ) = ( 0.39 0.8 0.1 0.3 0.2 0.9 0.8 p(1,0) p(1, 0.5) p(1, 1) See the figure below for (left) a selection of iso-lines of p(u, v) and (right) a 3D rendering of p(u, v) as a height surface…arrow_forward
- O Functions Composition of two functions: Domain and... Two functions ƒ and g are defined in the figure below. 76 2 8 5 7 8 19 8 9 Domain of f Range of f Domain of g Range of g 3/5 Anthony Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: ☐ (b) Range of gof: ☐ Х Explanation Check 0,0,... Español لكا ©2025 McGraw Hill LLC. All Rights Reserved Torms of lico Privacy Contor Accessibility.arrow_forwardTwo functions ƒ and g are defined in the figure below. g 6 6 7 8 8 8 9 Domain of f Range of f Domain of g Range of g Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: (b) Range of gof: ☐ ☑ 0,0,...arrow_forwardDone Oli ○ Functions Composition of two functions: Domain and range Two functions 0 g 3 4 6 www-awy.aleks.com g and ƒ are defined in the figure below. 8 8 9 Domain of g Range of g Domain of f Range of f 0/5 Anthony Find the domain and range of the composition f.g. Write your answers in set notation. (a) Domain of fog: ☐ (b) Range of fog: ☐ Х Explanation Check 0,0,... Español © 2025 McGraw HillLLC. AIL Rights Reserved Terms of Use | Privacy Center Accessibilityarrow_forward
- Use the graph of the function y = g(x) below to answer the questions. y' -5 -4 4- 3- 27 -2 -3+ -4 x 4 (a) Is g(-2) negative? Yes No (b) For which value(s) of x is g(x) > 0? Write your answer using interval notation. ☐ (c) For which value(s) of x is g(x) = 0? If there is more than one value, separate them with commas. 0,0... (0,0) (0,0) (0,0) (0,0) OVO 0arrow_forwardIt is given that E4E3E2E1A=⎡⎣⎢⎢⎢−1002−40488⎤⎦⎥⎥⎥. Here the matrices E4, E3, E2, and, E1 are: E1=⎡⎣⎢⎢⎢100010008⎤⎦⎥⎥⎥E2=⎡⎣⎢⎢⎢100010−501⎤⎦⎥⎥⎥E3=⎡⎣⎢⎢⎢1000−10001⎤⎦⎥⎥⎥E4=⎡⎣⎢⎢⎢001010100⎤⎦⎥⎥⎥arrow_forwardIt is given that E4E3E2E1A=⎡⎣⎢⎢⎢−1002−40488⎤⎦⎥⎥⎥. Here the matrices E4, E3, E2, and, E1 are: E1=⎡⎣⎢⎢⎢100010008⎤⎦⎥⎥⎥E2=⎡⎣⎢⎢⎢100010−501⎤⎦⎥⎥⎥E3=⎡⎣⎢⎢⎢1000−10001⎤⎦⎥⎥⎥E4=⎡⎣⎢⎢⎢001010100⎤⎦⎥⎥⎥ What is the determinant of A?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY