Mean Value Theorem and the police again Compare carefully to Exercise 43. A state patrol officer saw a car start from rest at a highway on-ramp. She radioed ahead to another officer 30 mi along the highway. When the car reached the location of the second officer 30 min later, it was clocked going 60 mi/hr. Can the patrol officer conclude that the driver exceeded the speed limit?
Mean Value Theorem and the police A state patrol officer saw a car start from rest at a highway on-ramp. She radioed ahead to a patrol officer 30 mi along the highway. When the car reached the location of the second officer 28 min later, it was clocked going 60 mi/hr. The driver of the car was given a ticket for exceeding the 60-mi/hr speed limit. Why can the officer conclude that the driver exceeded the speed limit?
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Single Variable Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
- Planetary Velocity The following table gives the mean velocity of planets in their orbits versus their mean distance from the sun. Note that 1AU astronomical unit is the mean distance from Earth to the sun, abut 93 million miles. Planet d=distance AU v=velocity km/sec Mercury 0.39 47.4 Venus 0.72 35.0 Earth 1.00 29.8 Mars 1.52 24.1 Jupiter 5.20 13.1 Saturn 9.58 9.7 Uranus 19.20 6.8 Neptune 30.05 5.4 Astronomers tell us that it is reasonable to model these data with a power function. a Use power regression to express velocity as a power function of distance from the sun. b Plot the data along with the regression equation. c An asteroid orbits at a mean distance of 3AU from the sun. According to the power model you found in part a, what is the mean orbital velocity of the asteroid?arrow_forwardUse the model we created using technology in Example 6 to predict the gas consumption in 2011. Is this aninterpolation or an extrapolation?arrow_forwardA driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What is the average rate of flow of the gasoline into the gas tank?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning