University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
14th Edition
ISBN: 9780133978049
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 42, Problem 42.8E
Two atoms of cesium (Cs) can form a Cs2 molecule. The equilibrium distance between the nuclei in a Cs2 molecule is 0.447 nm. Calculate the moment of inertia about an axis through the center of mass of the two nuclei and perpendicular to the line joining them. The mass of a cesium atom is 2.21 × 10−25kg, of each atom (use the result of Exercise 42.9); (c) the rotational period (the time for one rotation)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two atoms of cesium (Cs) can form a Cs2 molecule. The equilibrium distance between the nuclei in a Cs2 molecule is 0.447 nm. Calculate the moment of inertia about an axis through the center of mass of the two nuclei and perpendicular to the line joining them. The mass of a cesium atom is 2.21*10-25 kg.
The two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. What is the first excited rotational energy level for the CO molecule? (Give the your answer in meV.)
The two nuclei in the nitric oxide (NO) molecule are 0.1154 nm apart. The mass of the most common nitrogen atom is 2.326 * 10-26 kg, and the mass of the most common oxygen atom is 2.656 * 10-26 kg. Find the energies, in meV, of the lowest three rotational energy levels of NO.
Chapter 42 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
9. An ideal gas at 20°C consists of 2.2 × 1022 atoms. 4.3 J of thermal energy are removed from the gas. What is...
College Physics: A Strategic Approach (3rd Edition)
Description of Motion: Move toward the detector with decreasing speed, then just as you have come to rest, move...
Tutorials in Introductory Physics
Why is water so important to life on Earth? List the three major roles that water plays in metabolism.
Life in the Universe (4th Edition)
The mass of the little sister.
Physics (5th Edition)
Suppose you have a gas containing hydrogen molecules and oxygen molecules, in thermal equilibrium. Which molecu...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Most of the mass of an atom is in its nucleus. Model the mass distribution in a diatomic molecule as two spheres of uniform density, each of radius 2.00 x 10-15 m and mass 1.00 x 10-26 kg, located at points along the y axis as in 42.5a, and separated by 2.00 x 10-10 m. Rotation about the axis joining the nuclei in the diatomic molecule is ordinarily ignored because the first excited state would have an energy that is too high to access. To see why, calculate the ratio of the energy of the first excited state for rotation about the y axis to the energy of the first excited state for rotation about the x axis.arrow_forward(a) (b) (c) 1. Consider a system with two spin ½ particles in a four-dimensional basis |s₁m₁₂m₂ >: 1 1 1 1 2'2'2'2 (d) |4₁ >= |4₁₂ >= |4₁ >= |4₁₂ >= >= xi xi 1 1 1 -1 1 -1 1 1 2' 2 '2'2 >= x+xz where x and x are the eigenspinors of the operator Ŝ₂. The indices 1 and 2 refer to particle 1 and particle 2, respectively. In addition, 1 -1 1-1 2' 2 '2 Xi x > = X₁ X₂ S₁ is the spin operator of particle 1. $₂ is the spin operator of particle 2. Ŝ is the total spin operator: S = S₁ + S₂. Find the matrix representations of S1z, Szz, S2, and $2 in the four-dimensional basis |Yn >. Hint: make a table. Find the matrix representations of the total spin operators S² and S₂ in the basis |Yn >. Find the normalized eigenspinors and eigenvalues of $² and Ŝ₂. Congratulations: you just derived the Clebsch Gordon coefficients in a way that is different from the method used in Griffiths. Explain! Indicate degeneracies. Using the eigenspinors of Ŝ² and $₂ representations of Ŝ² and S₂ as your new basis, write…arrow_forwardThe l = 2 rotational level of the hydrogen chloride (HCl) molecule has energy 7.90 meV. The mass of the most common hydrogen atom is 1.674 * 10-27 kg, and the mass of the most common chlorine atom is 5.807 * 10-26 kg. Find the distance between the H and Cl nuclei.arrow_forward
- The two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV. What is the effective spring constant of the CO molecule? (Give your answer in N/m.)arrow_forwardif the chlorine molecule at 290K were to rotate at the angular frequency predicted by the equipartition theorem what would be the average centipital force ? ( the atoms of Cl are 2 x 10-10 m apart and the mass of the chlorine atom 35.45 a.m.u )arrow_forwardA + Given that B 7-10- == 13) Suppose that the interaction energy between two atoms is given by E (r) the atoms from a stable molecule with an internuclear distance of 0.3 nm and a dissociation energy of 4 eV, calculate A and B. Also calculate the force require to break the molecule and the critical distance between the nuclei for which this occurs.arrow_forward
- An isolated LiCl molecule has its chloride ion (mass = 35 u) at x= 0 pm , and its lithium ion (7 u) at x = 202 pm. Where is the LiCl molecule's mass centered? 40.4 pm O 101 pm O o pm O +33.7 pm O 202 pm cannot determine with the information givenarrow_forwardNanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body's oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person's bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 23 nanometers. A) What is the volume of one nanocontainer? (Ignore the thickness of the nanocontainer's wall.) B)Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/Lg/L . How many grams of oxygen could be contained by each nanocontainer?…arrow_forwardNanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body's oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person's bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 23 nanometers. A)What is the volume of one nanocontainer? B)Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/Lg/L . How many grams of oxygen could be contained by each nanocontainer? C)Normal air contains about 0.28 gg of oxygen per…arrow_forward
- An alpha particle with kinetic energy 11.0 Me V makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L%=pob, where po is the magnitude of the initial momentum of the alpha particle and b=1.50x10-12m (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is 82. The alpha particle is a helium nucleus, with atomic number 2.) Repeat for b=1. 10×10-13 m. Express your answer in meters. ΑΣφ Submit Request Answer Part C Repeat for b=1.50×10-14 m. Express your answer in meters.arrow_forwardYou are preparing to compete in the Physics Olympics. Your instructor is coaching you by providing you with challenging problems of the type you might see on an Olympics exam. He comes up with the following problem and gives you 15 minutes to solve it: Imagine a perfectly rigid HCl molecule that does not stretch as it rotates. The equilibrium separation of its ions is 0.127 5 nm. There are two isotopes for chlorine on the sample, Cl-35 and Cl-37. This results in double peaks in the molecular spectrum as shown. (a) Find an expression for the difference in the frequency between the peaks to the right of the gap as a function of the masses of the two chlorine isotopes and the quantum number J. (b) Estimate the difference in frequency numerically for J = 0, without consulting tables. Quick! Get to work!arrow_forwardAssume a hydrogen atom is a sphere with diameter 0.100 nm and a hydrogen molecule consists of two such spheres in contact. (a) What fraction of the space in a tank of hydrogen gas at 0°C and 1.00 atm is occupied by the hydrogen molecules themselves? (b) What fraction of the space within one hydrogen atom is occupied by its nucleus, of radius 1.20 fm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY