University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
14th Edition
ISBN: 9780133978049
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.53CP
(a)
To determine
To show: The pressure of the system of electrons at absolute zero is
(b)
To determine
The pressure for copper in pascals and atmospheres.
(c)
To determine
Why don’t the electrons in a piece of copper explode out of the metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find q, △U, and the work done for path ACB for the mono atomic ideal gas system.
i need the answer quickly
Consider a system of N free electrons within a volume V. Even at absolute zero, such a system exerts a
pressure P on its surroundings due to the motion of the electrons. To calculate this pressure, imagine that the
volume increases by a small amount dV. The electrons will do an amount of work PdV on their surroundings,
which means that the total energy Erot of the electrons will change by an amount dEtot = -PdV. Hence
P = -dErot/dV.
a) Show that the pressure of the electrons at absolute zero is
2 N
P ==EFo,
where Ero denotes the Fermi energy at absolute zero.
b) Calculate Efo and P for solid copper, which has a free-electron concentration of 8.45 x 1028 m-3. Express
Ero and P in electronvolts and atmospheres, respectively.
c) The pressure you found in part (b) is extremely high. Why, then, don't the electrons in a piece of copper
simply explode out of the metal?
Chapter 42 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- A charge distribution with spherical symmetry has density = [' Pv Po₂ 0, 0≤r≤R r> R Calculate energy with p.V du equation. PV dvarrow_forwardThe binding energy of an electron in a hydrogen atom is 13.6 electron volts. At what temperature will the hydrogen atom’s adiabatic index start to rise, due to the electron and proton being two particles?arrow_forwardA spherical drop of water of 1mm radius is split into 1 illion droplets . Find the work done in doing so T=0.07N/m.arrow_forward
- Question 6: Free energy minimization Consider a theoretical system in which the particles interact so that the internal energy depends on volume as U = nRT + n², where A = 1.31e+01 J m³/mole² is a very small repulsive interaction between the particles and S = nRln V. Using minimization of free energy with respect to the volume, find the external pressure if the equilibrium volume is 1.64e-02 m³, the number of particles is 3.04e+00 moles, and the temperature is 2.30e+02 K (a) 3.55e+05 Pa (b) -9.54e+04 Pa (c) 3.62e+05 Pa (d) 3.48e+05 Pa (e) 8.05e+05 Pa ✓ ✓ 100% This question is complete and cannot be answered again.arrow_forwardVSng Hoo ki Law , and throught the given Values Find the Value of the Constant K and then draw the dagram. Em(9) X (mm) 20 21 30 40 2 32 44 54 67 92 15 50 60 7o 7 110 138 16 1 130 150 1o 1. 200 226arrow_forwardOne description of the potential energy of a diatomic molecule is given by the Lennard–Jones potential, U = (A)/(r12) - (B)/(r6)where A and B are constants and r is the separation distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV ⋅ m12 and B = 1.488 x 10-60 eV ⋅ m6. Find (a) the separation distance r0 at which the energy of the molecule is a minimum and (b) the energy E required to break up theH2 molecule.arrow_forward
- The vapor pressure of pure solid silver and solid silver-palladium alloys are given in the following: For silver: -13,700 T log P For the solid silver-palladium alloy: -13,800 log P = T Derive the free energy v. temperature of the two systems. -+8.73 +8.65 (torr) (torr)arrow_forwardG.garrow_forwardTwo systems A and B, of identical composition, are brought together and allowed to exchange both energy and particles, keeping volumes VA and VB constant. Show that the minimum value of the quantity (dEA/dNA) is given by HATB – HBTA TB – TA where the u's and the T's are the respective chemical potentials and temperatures. I B 圖 回 !!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning